skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The C. elegans SMOC-1 protein acts cell non-autonomously to promote bone morphogenetic protein signaling
Bone morphogenetic protein (BMP) signaling regulates many different developmental and homeostatic processes in metazoans. The BMP pathway is conserved in Caenorhabditis elegans, and is known to regulate body size and mesoderm development. We have identified the C. elegans smoc-1 (Secreted MOdular Calcium-binding protein-1) gene as a new player in the BMP pathway. smoc-1(0) mutants have a small body size, while overexpression of smoc-1 leads to a long body size and increased expression of the RAD-SMAD (reporter acting downstream of SMAD) BMP reporter, suggesting that SMOC-1 acts as a positive modulator of BMP signaling. Using double-mutant analysis, we showed that SMOC-1 antagonizes the function of the glypican LON-2 and acts through the BMP ligand DBL-1 to regulate BMP signaling. Moreover, SMOC-1 appears to specifically regulate BMP signaling without significant involvement in a TGFβ-like pathway that regulates dauer development. We found that smoc-1 is expressed in multiple tissues, including cells of the pharynx, intestine, and posterior hypodermis, and that the expression of smoc-1 in the intestine is positively regulated by BMP signaling. We further established that SMOC-1 functions cell nonautonomously to regulate body size. Human SMOC1 and SMOC2 can each partially rescue the smoc-1(0) mutant phenotype, suggesting that SMOC-1's function in modulating BMP signaling is evolutionarily conserved. Together, our findings highlight a conserved role of SMOC proteins in modulating BMP signaling in metazoans.  more » « less
Award ID(s):
1659534
PAR ID:
10093272
Author(s) / Creator(s):
Date Published:
Journal Name:
Genetics
Volume:
211
ISSN:
1943-2631
Page Range / eLocation ID:
683-702
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mullins, Mary C. (Ed.)
    Secreted modular calcium-binding proteins (SMOCs) are conserved matricellular proteins found in organisms fromCaenorhabditis elegansto humans. SMOC homologs characteristically contain 1 or 2 extracellular calcium-binding (EC) domain(s) and 1 or 2 thyroglobulin type-1 (TY) domain(s). SMOC proteins inDrosophilaandXenopushave been found to interact with cell surface heparan sulfate proteoglycans (HSPGs) to exert both positive and negative influences on the conserved bone morphogenetic protein (BMP) signaling pathway. In this study, we used a combination of biochemical, structural modeling, and molecular genetic approaches to dissect the functions of the sole SMOC protein inC.elegans. We showed that CeSMOC-1 binds to the heparin sulfate proteoglycan GPC3 homolog LON-2/glypican, as well as the mature domain of the BMP2/4 homolog DBL-1. Moreover, CeSMOC-1 can simultaneously bind LON-2/glypican and DBL-1/BMP. The interaction between CeSMOC-1 and LON-2/glypican is mediated specifically by the EC domain of CeSMOC-1, while the full interaction between CeSMOC-1 and DBL-1/BMP requires full-length CeSMOC-1. We provide both in vitro biochemical and in vivo functional evidence demonstrating that CeSMOC-1 functions both negatively in a LON-2/glypican-dependent manner and positively in a DBL-1/BMP-dependent manner to regulate BMP signaling. We further showed that in silico,Drosophilaand vertebrate SMOC proteins can also bind to mature BMP dimers. Our work provides a mechanistic basis for how the evolutionarily conserved SMOC proteins regulate BMP signaling. 
    more » « less
  2. Upon sensing viral RNA, mammalian RIG-I-like receptors (RLRs) activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well studied. In contrast, the downstream signaling mechanisms for invertebrate RLRs are much less clear. For example, theCaenorhabditis elegansRLR DRH-1 lacks annotated CARDs and up-regulates the distinct output of RNA interference. Here, we found that similar to mammal RLRs, DRH-1 signals through two tandem CARDs (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation inC. elegans. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into antiviral signaling inC. elegans, highlighting unexpected parallels in RLR signaling betweenC. elegansand mammals. 
    more » « less
  3. Abstract Oxidative protein folding in the endoplasmic reticulum (ER) is essential for all eukaryotic cells yet generates hydrogen peroxide (H2O2), a reactive oxygen species (ROS). The ER-transmembrane protein that provides reducing equivalents to ER and guards the cytosol for antioxidant defense remains unidentified. Here we combine AlphaFold2-based and functional reporter screens inC. elegansto discover a previously uncharacterized and evolutionarily conserved protein ERGU-1 that fulfills these roles. DeletingC. elegansERGU-1 causes excessive H2O2and transcriptional gene up-regulation through SKN-1, homolog of mammalian antioxidant master regulator NRF2. ERGU-1 deficiency also impairs organismal reproduction and behavioral responses to H2O2. BothC. elegansand human ERGU-1 proteins localize to ER membranes and form network reticulum structures. Human andDrosophilahomologs of ERGU-1 can rescueC. elegansmutant phenotypes, demonstrating evolutionarily ancient and conserved functions. In addition, purified ERGU-1 and human homolog TMEM161B exhibit redox-modulated oligomeric states. Together, our results reveal an ER-membrane-specific protein machinery for peroxide detoxification and suggest a previously unknown and conserved mechanisms for antioxidant defense in animal cells. 
    more » « less
  4. Simon, Hans-Uwe (Ed.)
    Protein quality control pathways play important roles in resistance against pathogen infection. For example, the conserved transcription factor SKN-1/NRF up-regulates proteostasis capacity after blockade of the proteasome and also promotes resistance against bacterial infection in the nematodeCaenorhabditis elegans. SKN-1/NRF has 3 isoforms, and the SKN-1A/NRF1 isoform, in particular, regulates proteasomal gene expression upon proteasome dysfunction as part of a conserved bounce-back response. We report here that, in contrast to the previously reported role of SKN-1 in promoting resistance against bacterial infection, loss-of-function mutants inskn-1aand its activating enzymesddi-1andpng-1show constitutive expression of immune response programs against natural eukaryotic pathogens ofC.elegans. These programs are the oomycete recognition response (ORR), which promotes resistance against oomycetes that infect through the epidermis, and the intracellular pathogen response (IPR), which promotes resistance against intestine-infecting microsporidia. Consequently,skn-1amutants show increased resistance to both oomycete and microsporidia infections. We also report that almost all ORR/IPR genes induced in common between these programs are regulated by the proteasome and interestingly, specific ORR/IPR genes can be induced in distinct tissues depending on the exact trigger. Furthermore, we show that increasing proteasome function significantly reduces oomycete-mediated induction of multiple ORR markers. Altogether, our findings demonstrate that proteasome regulation keeps innate immune responses in check in a tissue-specific manner against natural eukaryotic pathogens of theC.elegansepidermis and intestine. 
    more » « less
  5. Sex comb on midleg-like-2 (SCML2), a conserved polycomb group protein, functions as a transcriptional repressor. SCML2 binds monomethylated lysine residues on histones and regulates homeotic gene expression during development in mammals and the fly. Using proteomic approaches, we have identified SCML2 as a binding partner of the YAP1 protein complexes isolated from nuclei of prostate cancer cell lines. Both SCML2 and YAP1 are known to regulate basic cellular biology, including stem cell maintenance and carcinogenesis. Our western blot analysis showed that, unlike androgen receptor (AR)-negative cancerous and non-cancerous prostate epithelium, AR-positive cell lines express the high levels of SCML2, suggesting a possible link between androgen hormonal signaling and SCML2. In addition, our immunofluorescence imaging revealed that androgen hormone signaling promoted the subcellular localization of SCML2 and YAP1 proteins compared with mock control. Enzalutamide, a potent pharmacological inhibitor of AR, significantly prevented the subcellular distribution ofYAP1 and SCML2. Consistent with this observation, our proximity ligation assay demonstrated that androgen also regulated the physical interaction between SCML2 and YAP1proteins that occurred primarily in cell nuclei. Enzalutamide also prevented protein-protein interaction between YAP and SCML2. Besides, our GST-pulldown assay revealed that SCML2 and proteins physically interact with each other in the test tube. Furthermore, our promoter-reporter assay showed that transfection of two different SCML2 siRNA enhanced the activation of the YAP-responsive promoter-reporter gene four-fold compared to mock siRNA control. These observations suggest that the interaction between SCML2 and YAP1 is biologically functional and crucial in human physiology and disease. 
    more » « less