Abstract—An optimal guidance method is developed that reduces sensitivity to parametric uncertainties in the dynamic model. The method combines a previously developed method for guidance and control using adaptive Legendre-Gauss-Radau (LGR) collocation and a previously developed approach for desensitized optimal control. Guidance updates are performed such that the desensitized optimal control problem is re-solved on the remaining horizon at the start of each guidance cycle. The effectiveness of the method is demonstrated on a simple example using Monte Carlo simulation. The application of the method results in a smaller final state error distribution when compared to desensitized optimal control without guidance as well as a previously developed method for optimal guidance and control.
more »
« less
A pseudospectral method for optimal control based on collocation at the Gauss points
A Gauss collocation method is developed for solving optimal control problems with convex control constraints. The method has a local exponential convergence rate when the solution of the continuous problem is smooth and the Hamiltonian possesses a convexity property.
more »
« less
- PAR ID:
- 10093310
- Date Published:
- Journal Name:
- 2018 IEEE Conference on Decision and Control (CDC)
- Page Range / eLocation ID:
- 2490 to 2495
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A modified form of Legendre-Gauss orthogonal direct collocation is developed for solving optimal control problems whose solutions are nonsmooth due to control discon- tinuities. This new method adds switch time variables, control variables, and collocation conditions at both endpoints of a mesh interval, whereas these new variables and collocation con- ditions are not included in standard Legendre-Gauss orthogonal collocation. The modified Legendre-Gauss collocation method alters the search space of the resulting nonlinear programming problem and optimizes the switch point of the control solution. The transformed adjoint system of the modified Legendre- Gauss collocation method is then derived and shown to satisfy the necessary conditions for optimality. Finally, an example is provided where the optimal control is bang-bang and contains multiple switches. This method is shown to be capable of solving complex optimal control problems with nonsmooth solutions.more » « less
-
A modified Legendre-Gauss-Radau collocation method is developed for solving optimal control problems whose solutions contain a nonsmooth optimal control. The method includes an additional variable that defines the location of nonsmoothness. In addition, collocation constraints are added at the end of a mesh interval that defines the location of nonsmoothness in the solution on each differential equation that is a function of control along with a control constraint at the endpoint of this same mesh interval. The transformed adjoint system for the modified Legendre-Gauss-Radau collocation method along with a relationship between the Lagrange multipliers of the nonlinear programming problem and a discrete approximation of the costate of the optimal control problem is then derived. Finally, it is shown via example that the new method provides an accurate approximation of the costate.more » « less
-
Summary A method is developed to numerically solve chance constrained optimal control problems. The chance constraints are reformulated as nonlinear constraints that retain the probability properties of the original constraint. The reformulation transforms the chance constrained optimal control problem into a deterministic optimal control problem that can be solved numerically. The new method developed in this paper approximates the chance constraints using Markov Chain Monte Carlo sampling and kernel density estimators whose kernels have integral functions that bound the indicator function. The nonlinear constraints resulting from the application of kernel density estimators are designed with bounds that do not violate the bounds of the original chance constraint. The method is tested on a nontrivial chance constrained modification of a soft lunar landing optimal control problem and the results are compared with results obtained using a conservative deterministic formulation of the optimal control problem. Additionally, the method is tested on a complex chance constrained unmanned aerial vehicle problem. The results show that this new method can be used to reliably solve chance constrained optimal control problems.more » « less
-
null (Ed.)A new method is developed for solving optimal control problems whose solutions are nonsmooth. The method developed in this paper employs a modified form of the Legendre–Gauss–Radau orthogonal direct collocation method. This modified Legendre–Gauss–Radau method adds two variables and two constraints at the end of a mesh interval when compared with a previously developed standard Legendre– Gauss–Radau collocation method. The two additional variables are the time at the interface between two mesh intervals and the control at the end of each mesh inter- val. The two additional constraints are a collocation condition for those differential equations that depend upon the control and an inequality constraint on the control at the endpoint of each mesh interval. The additional constraints modify the search space of the nonlinear programming problem such that an accurate approximation to the location of the nonsmoothness is obtained. The transformed adjoint system of the modified Legendre–Gauss–Radau method is then developed. Using this transformed adjoint system, a method is developed to transform the Lagrange multipliers of the nonlinear programming problem to the costate of the optimal control problem. Fur- thermore, it is shown that the costate estimate satisfies one of the Weierstrass–Erdmann optimality conditions. Finally, the method developed in this paper is demonstrated on an example whose solution is nonsmooth.more » « less
An official website of the United States government

