skip to main content

Title: B- and D-meson leptonic decay constants and quark masses from four-flavor lattice QCD
We describe a recent lattice-QCD calculation of the leptonic decay con- stants of heavy-light pseudoscalar mesons containing charm and bottom quarks and of the masses of the up, down, strange, charm, and bottom quarks. Results for these quantities are of the highest precision to date. Calculations use 24 isospin-symmetric ensembles of gauge-field configura- tions with six different lattice spacings as small as approximately 0.03 fm and several values of the light quark masses down to physical values of the average up- and down-sea-quark masses. We use the highly-improved staggered quark (HISQ) formulation for valence and sea quarks, includ- ing the bottom quark. The analysis employs heavy-quark effective theory (HQET). A novel HQET method is used in the determination of the quark masses.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1719626
Publication Date:
NSF-PAR ID:
10093396
Journal Name:
13th Conference on the Intersections of Particle and Nuclear Physics
Volume:
arXiv:1810.00250
Sponsoring Org:
National Science Foundation
More Like this
  1. We present results for B(s)- and D(s)-meson semileptonic decays from ongoing calculations by the Fermilab Lattice and MILC Collaborations. Our calculation employs the highly improved stag- gered quark (HISQ) action for both sea and valence quarks and includes several ensembles with physical-mass up, down, strange, and charm quarks and lattice spacings ranging from a ≈ 0.15 fm down to 0.06 fm. At most lattice spacings, an ensemble with physical-mass light quarks is included. The use of the highly improved action, combined with the MILC Collaboration’s gauge ensembles with lattice spacings down to a ≈ 0.042 fm, allows heavy valence quarks to be treated with the same discretization as the light and strange quarks. This unified treatment of the valence quarks allows (in some cases) for absolutely normalized currents, bypassing the need for perturbative matching, which has been a leading source of uncertainty in previous calculations of B-meson decay form factors by our collaboration. All preliminary form-factor results are blinded.
  2. Abstract

    On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of,, and. The lattice size is, which corresponds to a spatial extension offm, with a lattice spacing offm. For the valence light, strange, and charm quarks, we use overlap fermions at several mass points close to their physical values. Our results at the physical point areMeV,MeV,MeV,MeV, andMeV. The couplings ofandto the tensor current () can be derived from ratiosand, respectively, which are the first lattice quantum chromodynamics (QCD) results. We also obtain ratiosand, which reflect the size of heavy quark symmetry breaking in charmed mesons. Ratiosandcan be taken as a measure ofSU(3) flavor symmetry breaking.

  3. A bstract The radiative energy loss of fast partons traveling through the quark-gluon plasma (QGP) is commonly studied within perturbative QCD (pQCD). Nonperturbative (NP) effects, which are expected to become important near the critical temperature, have been much less investigated. Here, we utilize a recently developed T -matrix approach to incorporate NP effects for gluon emission off heavy quarks propagating through the QGP. We set up four cases that contain, starting from a Born diagram calculation with color- Coulomb interaction, an increasing level of NP components, by subsequently including (remnants of ) confining interactions, resummation in the heavy-light scattering amplitude, and off-shell spectral functions for both heavy and light partons. For each case we compute the power spectra of the emitted gluons, heavy-quark transport coefficients (drag and transverse-momentum broadening, $$ \hat{q} $$ q ̂ ), and the path-length dependent energy loss within a “QGP brick” at fixed temperature. Investigating the differences in these quantities between the four cases illustrates how NP mechanisms affect gluon radiation processes. While the baseline perturbative processes experience a strong suppression of soft radiation due to thermal masses of the emitted gluons, confining interactions, ladder resummations and broad spectral functions (re-)generate a large enhancement toward lowmore »momenta and low temperatures. For example, for a 10 GeV charm quark at 200 MeV temperature, they enhance the transport coefficients by up to a factor of 10, while the results smoothly converge to perturbative results at sufficiently hard scales.« less
  4. Abstract The large values and constituent-quark-number scaling of the elliptic flow of low- D mesons imply that charm quarks, initially produced through hard processes, might be partially thermalized through strong interactions with quark-gluon plasma (QGP) in high-energy heavy-ion collisions. To quantify the degree of thermalization of low- charm quarks, we compare the meson spectra and elliptic flow from a hydrodynamic model to experimental data as well as transport model simulations. We use an effective charm chemical potential at the freeze-out temperature to account for the initial charm quark production from hard processes and assume that they are thermalized in the local comoving frame of the medium before freeze-out. mesons are sampled statistically from the freeze-out hyper-surface of the expanding QGP as described by the event-by-event (3+1)D viscous hydrodynamic model CLVisc. Both the hydrodynamic and transport models can describe the elliptic flow of mesons at GeV/ c as measured in Au+Au collisions at GeV. Though the experimental data on spectra are consistent with the hydrodynamic result at small GeV/ c , they deviate from the hydrodynamic model at high transverse momentum, GeV/ c . The diffusion and parton energy loss mechanisms in the transport model can describe the measured spectra reasonablymore »well within the theoretical uncertainty. Our comparative study indicates that charm quarks only approach local thermal equilibrium at small , even though they acquire sizable elliptic flow comparable to light-quark hadrons at both small and intermediate .« less
  5. We report progress on calculating the contribution to the anomalous magnetic moment of the muon from the disconnected hadronic diagrams with light and strange quarks and the valence QED contribution to the connected diagrams. The lattice QCD calculations use the highly- improved staggered quark (HISQ) formulation. The gauge configurations were generated by the MILC Collaboration with four flavors of HISQ sea quarks with physical sea-quark masses.