skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Conserved microbiota among young Heliconius butterfly species
Background Insects are the most diverse group of animals which have established intricate evolutionary interactions with bacteria. However, the importance of these interactions is still poorly understood. Few studies have focused on a closely related group of insect species, to test the similarities and differences between their microbiota. Heliconius butterflies are a charismatic recent insect radiation that evolved the unique ability to use pollen as a protein source, which affected life history traits and resulted in an elevated speciation rates. We hypothesize that different Heliconius butterflies sharing a similar trophic pollen niche, harbor a similar gut flora within species, population and sexes. Methods To test our hypothesis, we characterized the microbiota of 38 adult male and female butterflies representing six species of Heliconius butterflies and 2 populations of the same species. We sequenced the V4 region of the 16S rRNA gene with the Roche 454 system and analyzed the data with standard tools for microbiome analysis. Results Overall, we found a low microbial diversity with only 10 OTUs dominating across all individuals, mostly Proteobacteria and Firmicutes, which accounted for  99.5% of the bacterial reads. When rare reads were considered, we identified a total of 406 OTUs across our samples. We identified reads within Phyla Chlamydiae , found in 5 butterflies of four species. Interestingly, only three OTUs were shared among all 38 individuals ( Bacillus, Enterococcus and Enterobacteriaceae ). Altogether, the high individual variation overshadowed species and sex differences. Thus, bacterial communities were not structured randomly with 13% of beta-diversity explained by species, and 40 rare OTUs being significantly different across species. Finally, 13 OTUs, including the intercellular symbiont Spiroplasma, varied significantly in relative abundance between males and females. Discussion The Heliconius microbial communities in these 38 individuals show a low diversity with few differences in the rare microbes between females, males, species or populations. Indeed, Heliconius butterflies, similarly to other insects, are dominated by few OTUs, mainly from Proteobacteria and Firmicutes. The overall low microbial diversity observed contrasts with the high intra-species variation in microbiome composition. This could indicate that much of the microbiome maybe acquired from their surroundings. The significant differences between species and sexes were restricted to rare taxa, which could be important for microbial community stability under changing conditions as seen in other host-microbiome systems. The presence of symbionts like Spiroplasma or Chlamydiae , identified in this study for the first time in Heliconius , could play a vital role in their behavior and evolution by vertical transmission. Altogether, our study represents a step forward into the description of the microbial diversity in a charismatic group of closely related butterflies.  more » « less
Award ID(s):
1736026
PAR ID:
10094450
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
PeerJ
Volume:
6
ISSN:
2167-8359
Page Range / eLocation ID:
e5502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Growth, development and reproduction in animals are all limited by dietary nutrients. Expansion of an organism’s diet to sources not accessible to closely related species reduces food competition, and eases the constraints of nutrient limited diets. Adult butterflies are herbivorous insects known to feed primarily on nectar from flowers, which is rich in sugars but poor in amino acids. Only certain species in the genus Heliconius are known to also feed on pollen, which is especially rich in amino acids, and is known to prolong their lives by several months. The ability to digest pollen in Heliconius has been linked to specialized feeding behaviors (Krenn et al. 2009) and extra-oral digestion using enzymes, possibly including duplicated copies of cocoonase (Harpel et al. 2016; Smith et al. 2016 and 2018), a protease used by some moths to digest silk upon eclosion from their cocoons. In this reprint, Pinheiro de Castro and colleagues investigated the impact of artificial and natural diets on egg-laying ability, body weight, and cyanogenic glucoside abundance in adult Heliconius erato butterflies of both sexes. 
    more » « less
  2. Comparing the diversity of gut microbiota between and within social insect colonies can illustrate interactions between bacterial community composition and host behaviour. In many eusocial insect species, different workers exhibit different task behaviours. Evidence of compositional differences between core microbiota in different worker types could suggest a microbial association with the division of labour among workers. Here, we present the core microbiota ofAphaenogaster piceaant workers with different task behaviours. The genusAphaenogasteris abundant worldwide, yet the associated microbiota of this group is unstudied. Bacterial communities fromAphaenogaster piceagut samples in this study consist of 19 phyla, dominated by Proteobacteria, Cyanobacteria and Firmicutes. Analysis of 16S rRNA gene sequences reveals distinct similarity clustering ofAphaenogaster piceagut bacterial communities in workers that have more interactions with the refuse piles. Though gut bacterial communities of nurse and foraging ants are similar in overall composition and structure, the worker groups differ in relative abundances of dominant taxa. Gut bacterial communities from ants that have more interactions with refuse piles are dominated by amplicon sequence variants associated with Entomoplasmataceae. Interaction with faecal matter via refuse piles seems to have the greatest impact on microbial taxa distribution, and this effect appears to be independent of worker type. This is the first report surveying the gut microbiome community composition ofAphaenogasterants. 
    more » « less
  3. The composition of host-associated microbial communities may correlate with the overall status of the host, including physiology and fitness. New bi-directional hypotheses suggest that sexual behaviors can shape, and be shaped by reproductive microbiomes, which may be particularly important for species with mating systems that feature strong sexual selection. These dynamics have been particularly understudied in female animals. Using 16S rRNA sequencing, we compared the cloacal microbiome of females and males from two socially polyandrous bird species that vary in the strength of sexual selection, Jacana spinosa (Northern Jacana) and J. jacana (Wattled Jacana). We hypothesized that the strength of sexual selection would shape cloacal microbial diversity, such that the more polyandrous J. spinosa would have a more diverse microbiome, and that microbiomes would be more diverse in females than in males. If the reproductive microbiome is indicative of competitive status, we also hypothesized that cloacal microbial diversity would be associated with competitive traits, including plasma testosterone levels, body mass, or weaponry. We found no differences in microbial alpha diversity between species or sexes, but we did find that microbial beta diversity significantly differed between species. We also found a positive relationship between microbial alpha diversity and testosterone in female J. spinosa. Future experiments are needed to explore the potential drivers of correlations between the cloacal microbiome and competitive phenotypes in socially polyandrous jacanas. 
    more » « less
  4. null (Ed.)
    Abstract Background Heliconius butterflies are widely distributed across the Neotropics and have evolved a stunning array of wing color patterns that mediate Müllerian mimicry and mating behavior. Their rapid radiation has been strongly influenced by hybridization, which has created new species and allowed sharing of color patterning alleles between mimetic species pairs. While these processes have frequently been observed in widespread species with contiguous distributions, many Heliconius species inhabit patchy or rare habitats that may strongly influence the origin and spread of species and color patterns. Here, we assess the effects of historical population fragmentation and unique biology on the origins, genetic health, and color pattern evolution of two rare and sparsely distributed Brazilian butterflies, Heliconius hermathena and Heliconius nattereri . Results We assembled genomes and re-sequenced whole genomes of eight H. nattereri and 71 H. hermathena individuals. These species harbor little genetic diversity, skewed site frequency spectra, and high deleterious mutation loads consistent with recent population bottlenecks. Heliconius hermathena consists of discrete, strongly isolated populations that likely arose from a single population that dispersed after the last glacial maximum. Despite having a unique color pattern combination that suggested a hybrid origin, we found no genome-wide evidence that H. hermathena is a hybrid species. However, H. hermathena mimicry evolved via introgression, from co-mimetic Heliconius erato , of a small genomic region upstream of the color patterning gene cortex . Conclusions Heliconius hermathena and H. nattereri population fragmentation, potentially driven by historical climate change and recent deforestation, has significantly reduced the genetic health of these rare species. Our results contribute to a growing body of evidence that introgression of color patterning alleles between co-mimetic species appears to be a general feature of Heliconius evolution. 
    more » « less
  5. Wei, Fuwen (Ed.)
    Abstract Neotropical Heliconius butterflies are well known for their intricate behaviors and multiple instances of incipient speciation. Chemosensing plays a fundamental role in the life history of these groups of butterflies and in the establishment of reproductive isolation. However, chemical communication involves synergistic sensory and accessory functions, and it remains challenging to investigate the molecular mechanisms underlying behavioral differences. Here, we examine the gene expression profiles and genomic divergence of three sensory tissues (antennae, legs, and mouthparts) between sexes (females and males) and life stages (different adult stages) in two hybridizing butterflies, Heliconius melpomene and Heliconius cydno. By integrating comparative transcriptomic and population genomic approaches, we found evidence of widespread gene expression divergence, supporting a crucial role of sensory tissues in the establishment of species barriers. We also show that sensory diversification increases in a manner consistent with evolutionary divergence based on comparison with the more distantly related species Heliconius charithonia. The findings of our study strongly support the unique chemosensory function of antennae in all three species, the importance of the Z chromosome in interspecific divergence, and the nonnegligible role of nonchemosensory genes in the divergence of chemosensory tissues. Collectively, our results provide a genome-wide illustration of diversification in the chemosensory system under incomplete reproductive isolation, revealing strong molecular separation in the early stage of speciation. Here, we provide a unique perspective and relevant view of the genetic architecture (sensory and accessory functions) of chemosensing beyond the classic chemosensory gene families, leading to a better understanding of the magnitude and complexity of molecular changes in sensory tissues that contribute to the establishment of reproductive isolation and speciation. 
    more » « less