Human studies often rely on wearable lifelogging cameras that capture videos of individuals and their surroundings to aid in visual confirmation or recollection of daily activities like eating, drinking, and smoking. However, this may include private or sensitive information that may cause some users to refrain from using such monitoring devices. Also, short battery lifetime and large form factors reduce applicability for long-term capture of human activity. Solving this triad of interconnected problems is challenging due to wearable embedded systems’ energy, memory, and computing constraints. Inspired by this critical use case and the unique design problem, we developed NIR-sighted, an architecture for wearable video cameras that navigates this design space via three key ideas: (i) reduce storage and enhance privacy by discarding masked pixels and frames, (ii) enable programmers to generate effective masks with low computational overhead, and (iii) enable the use of small MCUs by moving masking and compression off-chip. Combined together in an end-to-end system, NIR-sighted’s masking capabilities and off-chip compression hardware shrinks systems, stores less data, and enables programmer-defined obfuscation to yield privacy enhancement. The user’s privacy is enhanced significantly as nowhere in the pipeline is any part of the image stored before it is obfuscated. We design a wearable camera called NIR-sightedCam based on this architecture; it is compact and can record IR and grayscale video at 16 and 20+ fps, respectively, for 26 hours nonstop (59 hours with IR disabled) at a fraction of comparable platforms power draw. NIR-sightedCam includes a low-power Field Programmable Gate Array that implements our mJPEG compress/obfuscate hardware, Blindspot. We additionally show the potential for privacy-enhancing function and clinical utility via an in-lab eating study, validated by a nutritionist. 
                        more » 
                        « less   
                    
                            
                            SyncWISE: Window Induced Shift Estimation for Synchronization of Video and Accelerometry from Wearable Sensors
                        
                    
    
            The development and validation of computational models to detect daily human behaviors (e.g., eating, smoking, brushing) using wearable devices requires labeled data collected from the natural field environment, with tight time synchronization of the micro-behaviors (e.g., start/end times of hand-to-mouth gestures during a smoking puff or an eating gesture) and the associated labels. Video data is increasingly being used for such label collection. Unfortunately, wearable devices and video cameras with independent (and drifting) clocks make tight time synchronization challenging. To address this issue, we present the Window Induced Shift Estimation method for Synchronization (SyncWISE) approach. We demonstrate the feasibility and effectiveness of our method by synchronizing the timestamps of a wearable camera and wearable accelerometer from 163 videos representing 45.2 hours of data from 21 participants enrolled in a real-world smoking cessation study. Our approach shows significant improvement over the state-of-the-art, even in the presence of high data loss, achieving 90% synchronization accuracy given a synchronization tolerance of 700 milliseconds. Our method also achieves state-of-the-art synchronization performance on the CMU-MMAC dataset. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10274462
- Date Published:
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 4
- Issue:
- 3
- ISSN:
- 2474-9567
- Page Range / eLocation ID:
- 1 to 26
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Computer vision on low-power edge devices enables applications including search-and-rescue and security. State-of-the-art computer vision algorithms, such as Deep Neural Networks (DNNs), are too large for inference on low-power edge devices. To improve efficiency, some existing approaches parallelize DNN inference across multiple edge devices. How-ever, these techniques introduce significant communication and synchronization overheads or are unable to balance workloads across devices. This paper demonstrates that the hierarchical DNN architecture is well suited for parallel processing on multiple edge devices. We design a novel method that creates a parallel inference pipeline for computer vision problems that use hierarchical DNNs. The method balances loads across the collaborating devices and reduces communication costs to facilitate the processing of multiple video frames simultaneously with higher throughput. Our experiments consider a representative computer vision problem where image recognition is performed on each video frame, running on multiple Raspberry Pi 4Bs. With four collaborating low-power edge devices, our approach achieves 3.21× higher throughput, 68% less energy consumption per device per frame, and a 58% decrease in memory when compared with existing sinaledevice hierarchical DNNs.more » « less
- 
            null (Ed.)Detecting when eating occurs is an essential step toward automatic dietary monitoring, medication adherence assessment, and diet-related health interventions. Wearable technologies play a central role in designing unobtrusive diet monitoring solutions by leveraging machine learning algorithms that work on time-series sensor data to detect eating moments. While much research has been done on developing activity recognition and eating moment detection algorithms, the performance of the detection algorithms drops substantially when the model is utilized by a new user. To facilitate the development of personalized models, we propose PALS, Proximity-based Active Learning on Streaming data, a novel proximity-based model for recognizing eating gestures to significantly decrease the need for labeled data with new users. Our extensive analysis in both controlled and uncontrolled settings indicates F-score of PALS ranges from 22% to 39% for a budget that varies from 10 to 60 queries. Furthermore, compared to the state-of-the-art approaches, off-line PALS achieves up to 40% higher recall and 12% higher F-score in detecting eating gestures.more » « less
- 
            With rapid growth in unhealthy diet behaviors, implementing strategies that improve healthy eating is becoming increasingly important. One approach to improving diet behavior is to continuously monitor dietary intake (e.g., calorie intake) and provide educational, motivational, and dietary recommendation feedback. Although technologies based on wearable sensors, mobile applications, and light-weight cameras exist to gather diet-related information such as food type and eating time, there remains a gap in research on how to use such information to close the loop and provide feedback to the user to improve healthy diet. We address this knowledge gap by introducing a diet behavior change framework that generates real-time diet recommendations based on a user’s food intake and considering user’s deviation from the suggested diet routine. We formulate the problem of optimal diet recommendation as a sequential decision making problem and design a greedy algorithm that provides diet recommendations such that the amount of change in user’s dietary habits is minimized while ensuring that the user’s diet goal is achieved within a given time-frame. This novel approach is inspired by the Social Cognitive Theory, which emphasizes behavioral monitoring and small incremental goals as being important to behavior change. Our optimization algorithm integrates data from a user’s past dietary intake as well as the USDA nutrition dataset to identify optimal diet changes. We demonstrate the feasibility of our optimization algorithms for diet behavior change using real-data collected in two study cohorts with a combined N=10 healthy participants who recorded their diet for up to 21 days.more » « less
- 
            Abstract In synchronization problems, the goal is to estimate elements of a group from noisy measurements of their ratios. A popular estimation method for synchronization is the spectral method. It extracts the group elements from eigenvectors of a block matrix formed from the measurements. The eigenvectors must be projected, or ‘rounded’, onto the group. The rounding procedures are constructed ad hoc and increasingly so when applied to synchronization problems over non-compact groups. In this paper, we develop a spectral approach to synchronization over the non-compact group $$\mathrm{SE}(3)$$, the group of rigid motions of $$\mathbb{R}^{3}$$. We based our method on embedding $$\mathrm{SE}(3)$$ into the algebra of dual quaternions, which has deep algebraic connections with the group $$\mathrm{SE}(3)$$. These connections suggest a natural rounding procedure considerably more straightforward than the current state of the art for spectral $$\mathrm{SE}(3)$$ synchronization, which uses a matrix embedding of $$\mathrm{SE}(3)$$. We show by numerical experiments that our approach yields comparable results with the current state of the art in $$\mathrm{SE}(3)$$ synchronization via the spectral method. Thus, our approach reaps the benefits of the dual quaternion embedding of $$\mathrm{SE}(3)$$ while yielding estimators of similar quality.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    