Woven smart textiles are useful in creating flexible electronics because they integrate circuitry into the structure of the fabric itself. However, there do not yet exist tools that support the specific needs of smart textiles weavers. This paper describes the process and development of AdaCAD, an application for composing smart textile weave drafts. By augmenting traditional weaving drafts, AdaCAD allows weavers to design woven structures and circuitry in tandem and offers specific support for common smart textiles techniques. We describe these techniques, how our tool supports them alongside feedback from smart textiles weavers. We conclude with a reflection on smart textiles practice more broadly and suggest that the metaphor of coproduction can be fruitful in creating effective tools and envisioning future applications in this space.
more »
« less
SkinPaper: Exploring Opportunities for Woven Paper as a Wearable Material for On-Skin Interactions
Paper circuitry has been extensively explored by HCI researchers as a means of creating interactive objects. However, these approaches focus on creating desktop or handheld objects, and paper as a wearable material remains under-explored. We present SkinPaper, a fabrication approach using silicone-treated washi paper to weave lightweight and easy-to-fabricate on-skin interactions. We adopt techniques from paper weaving and basketry weaving practices to create paper-woven structures that can conform to the body. Our approach uses off-the-shelf materials to facilitate a highly customizable fabrication process. We showcase eight case studies to illustrate our approach’s two to three-dimensional forms. To understand the expressiveness of the design space, we conducted a workshop study in which weavers created paper-woven on-skin interactions. We draw insights from the studies to understand the opportunities for paper-woven on-skin interactions.
more »
« less
- Award ID(s):
- 2047249
- PAR ID:
- 10427036
- Date Published:
- Journal Name:
- 2023 CHI Conference on Human Factors in Computing Systems
- Page Range / eLocation ID:
- 1 to 16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Smart textiles integrate sensing and actuation components into their structures to bring interactivity to fabrics. We describe how we adapted two existing fiber arts techniques, double weaving and yarn plying, for the purpose of creating a woven textile that changes color in response to touch. We draw from this experience to make three core contributions: descriptions of our experiments plying yarns that change between three color states; descriptions of double weaving structures that allow us to support interactivity while hiding circuitry from view; and suggestions for how these techniques could be adapted and extended by other researchers to make richly crafted and technologically sophisticated fabrics.more » « less
-
Computational handweaving combines the repeatable precision of digital fabrication with relatively high production demands of the user: a weaver must be physically engaged with the system to enact a pattern, line by line, into a fabric. Rather than approaching co-presence and repetitive labor as a negative aspect of design, we look to current practices in procedural generation (most commonly used in game design and screen-based new media art) to understand how designers can create room for suprise and emergent phenomena within systems of precision and constraint. We developed three designs for blending real-time input with predetermined pattern features. These include: using camera imagery sampled at weaving time; a 1:1 scale tool for composing patterns on the loom; and a live "Twitch'' stream where spectators determine the woven pattern. We discuss how experiential qualities of the systems led to different balances of underdetermination in procedural generation as well as how such an approach might help us think beyond an artifact/experience dichotomy in fabrication.more » « less
-
Woven textiles are increasingly a medium through which HCI is inventing new technologies. Key challenges in integrating woven textiles in HCI include the high level of textile knowledge required to make effective use of the new possibilities they afford and the need for tools that bridge the concerns of textile designers and concerns of HCI researchers. This paper presents AdaCAD, a parametric design tool for designing woven textile structures. Through our design and evaluation of AdaCAD we found that parametric design helps weavers notate and explain the logics behind the complex structures they generate. We discuss these finding in relation to prior work in integrating craft and/or weaving in HCI, histories of woven notation, and boundary object theory to illuminate further possibilities for collaboration between craftspeople and HCI practitioners.more » « less
-
Pressure sensitive robotic skins have long been investigated for applications to physical human-robot interaction (pHRI). Numerous challenges related to fabrication, sensitivity, density, and reliability remain to be addressed under various environmental and use conditions. In our previous studies, we designed novel strain gauge sensor structures for robotic skin arrays. We coated these star-shaped designs with an organic polymer piezoresistive material, Poly (3, 4-ethylenedioxythiophene)-ploy(styrenesulfonate) or PEDOT: PSS and integrated sensor arrays into elastomer robotic skins. In this paper, we describe a dry etching photolithographic method to create a stable uniform sensor layer of PEDOT:PSS onto star-shaped sensors and a lamination process for creating double-sided robotic skins that can be used with temperature compensation. An integrated circuit and load testing apparatus was designed for testing the resulting robotic skin pressure performance. Experiments were conducted to measure the loading performance of the resulting sensor prototypes and results indicate that over 80% sensor yields are possible with this fabrication process.more » « less