Malware authors make use of several techniques to obfuscate code from reverse engineering tools such as IdaPro. Typically, these techniques tend to be effective for about three to six instructions, but eventually the tools can properly disassemble the remaining code once the tool is again synchronized with the operation codes. But this loss of synchronization can be used to hide information within the instructions – steganography. Our research explores an approach to this by presenting “Weaver”, a framework for executable steganography. “Weaver” differs from other techniques in how it hides malicious instructions: the hiding instructions are prepared by generating an assembly listing of the program and finding candidate hiding locations, the steganography instructions are prepared by creating an assembly listing of the program to obtain the operation codes to be hidden, and the “weaving” process merges the two. This “weaving” attempts to place all the steganography instructions into candidate locations found in the hiding instructions.
more »
« less
Adapting Double Weaving and Yarn Plying Techniques for Smart Textiles Applications
Smart textiles integrate sensing and actuation components into their structures to bring interactivity to fabrics. We describe how we adapted two existing fiber arts techniques, double weaving and yarn plying, for the purpose of creating a woven textile that changes color in response to touch. We draw from this experience to make three core contributions: descriptions of our experiments plying yarns that change between three color states; descriptions of double weaving structures that allow us to support interactivity while hiding circuitry from view; and suggestions for how these techniques could be adapted and extended by other researchers to make richly crafted and technologically sophisticated fabrics.
more »
« less
- Award ID(s):
- 1755587
- PAR ID:
- 10094654
- Date Published:
- Journal Name:
- TEI '19 Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction
- Page Range / eLocation ID:
- 77 to 85
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Paper circuitry has been extensively explored by HCI researchers as a means of creating interactive objects. However, these approaches focus on creating desktop or handheld objects, and paper as a wearable material remains under-explored. We present SkinPaper, a fabrication approach using silicone-treated washi paper to weave lightweight and easy-to-fabricate on-skin interactions. We adopt techniques from paper weaving and basketry weaving practices to create paper-woven structures that can conform to the body. Our approach uses off-the-shelf materials to facilitate a highly customizable fabrication process. We showcase eight case studies to illustrate our approach’s two to three-dimensional forms. To understand the expressiveness of the design space, we conducted a workshop study in which weavers created paper-woven on-skin interactions. We draw insights from the studies to understand the opportunities for paper-woven on-skin interactions.more » « less
-
Woven smart textiles are useful in creating flexible electronics because they integrate circuitry into the structure of the fabric itself. However, there do not yet exist tools that support the specific needs of smart textiles weavers. This paper describes the process and development of AdaCAD, an application for composing smart textile weave drafts. By augmenting traditional weaving drafts, AdaCAD allows weavers to design woven structures and circuitry in tandem and offers specific support for common smart textiles techniques. We describe these techniques, how our tool supports them alongside feedback from smart textiles weavers. We conclude with a reflection on smart textiles practice more broadly and suggest that the metaphor of coproduction can be fruitful in creating effective tools and envisioning future applications in this space.more » « less
-
Recent advances in text-to-image generative models provide the ability to generate high-quality images from short text descriptions. These foundation models, when pre-trained on billion-scale datasets, are effective for various downstream tasks with little or no further training. A natural question to ask is how such models may be adapted for image compression. We investigate several techniques in which the pre-trained models can be directly used to implement compression schemes targeting novel low rate regimes. We show how text descriptions can be used in conjunction with side information to generate high-fidelity reconstructions that preserve both semantics and spatial structure of the original. We demonstrate that at very low bit-rates, our method can significantly improve upon learned compressors in terms of perceptual and semantic fidelity, despite no end-to-end training.more » « less
-
It takes great effort to manually or semi-automatically convert free-text phenotype narratives (e.g., morphological descriptions in taxonomic works) to a computable format before they can be used in large-scale analyses. We argue that neither a manual curation approach nor an information extraction approach based on machine learning is a sustainable solution to produce computable phenotypic data that are FAIR (Findable, Accessible, Interoperable, Reusable) (Wilkinson et al. 2016). This is because these approaches do not scale to all biodiversity, and they do not stop the publication of free-text phenotypes that would need post-publication curation. In addition, both manual and machine learning approaches face great challenges: the problem of inter-curator variation (curators interpret/convert a phenotype differently from each other) in manual curation, and keywords to ontology concept translation in automated information extraction, make it difficult for either approach to produce data that are truly FAIR. Our empirical studies show that inter-curator variation in translating phenotype characters to Entity-Quality statements (Mabee et al. 2007) is as high as 40% even within a single project. With this level of variation, curated data integrated from multiple curation projects may still not be FAIR. The key causes of this variation have been identified as semantic vagueness in original phenotype descriptions and difficulties in using standardized vocabularies (ontologies). We argue that the authors describing characters are the key to the solution. Given the right tools and appropriate attribution, the authors should be in charge of developing a project's semantics and ontology. This will speed up ontology development and improve the semantic clarity of the descriptions from the moment of publication. In this presentation, we will introduce the Platform for Author-Driven Computable Data and Ontology Production for Taxonomists, which consists of three components: a web-based, ontology-aware software application called 'Character Recorder,' which features a spreadsheet as the data entry platform and provides authors with the flexibility of using their preferred terminology in recording characters for a set of specimens (this application also facilitates semantic clarity and consistency across species descriptions); a set of services that produce RDF graph data, collects terms added by authors, detects potential conflicts between terms, dispatches conflicts to the third component and updates the ontology with resolutions; and an Android mobile application, 'Conflict Resolver,' which displays ontological conflicts and accepts solutions proposed by multiple experts. a web-based, ontology-aware software application called 'Character Recorder,' which features a spreadsheet as the data entry platform and provides authors with the flexibility of using their preferred terminology in recording characters for a set of specimens (this application also facilitates semantic clarity and consistency across species descriptions); a set of services that produce RDF graph data, collects terms added by authors, detects potential conflicts between terms, dispatches conflicts to the third component and updates the ontology with resolutions; and an Android mobile application, 'Conflict Resolver,' which displays ontological conflicts and accepts solutions proposed by multiple experts. Fig. 1 shows the system diagram of the platform. The presentation will consist of: a report on the findings from a recent survey of 90+ participants on the need for a tool like Character Recorder; a methods section that describes how we provide semantics to an existing vocabulary of quantitative characters through a set of properties that explain where and how a measurement (e.g., length of perigynium beak) is taken. We also report on how a custom color palette of RGB values obtained from real specimens or high-quality specimen images, can be used to help authors choose standardized color descriptions for plant specimens; and a software demonstration, where we show how Character Recorder and Conflict Resolver can work together to construct both human-readable descriptions and RDF graphs using morphological data derived from species in the plant genus Carex (sedges). The key difference of this system from other ontology-aware systems is that authors can directly add needed terms to the ontology as they wish and can update their data according to ontology updates. a report on the findings from a recent survey of 90+ participants on the need for a tool like Character Recorder; a methods section that describes how we provide semantics to an existing vocabulary of quantitative characters through a set of properties that explain where and how a measurement (e.g., length of perigynium beak) is taken. We also report on how a custom color palette of RGB values obtained from real specimens or high-quality specimen images, can be used to help authors choose standardized color descriptions for plant specimens; and a software demonstration, where we show how Character Recorder and Conflict Resolver can work together to construct both human-readable descriptions and RDF graphs using morphological data derived from species in the plant genus Carex (sedges). The key difference of this system from other ontology-aware systems is that authors can directly add needed terms to the ontology as they wish and can update their data according to ontology updates. The software modules currently incorporated in Character Recorder and Conflict Resolver have undergone formal usability studies. We are actively recruiting Carex experts to participate in a 3-day usability study of the entire system of the Platform for Author-Driven Computable Data and Ontology Production for Taxonomists. Participants will use the platform to record 100 characters about one Carex species. In addition to usability data, we will collect the terms that participants submit to the underlying ontology and the data related to conflict resolution. Such data allow us to examine the types and the quantities of logical conflicts that may result from the terms added by the users and to use Discrete Event Simulation models to understand if and how term additions and conflict resolutions converge. We look forward to a discussion on how the tools (Character Recorder is online at http://shark.sbs.arizona.edu/chrecorder/public) described in our presentation can contribute to producing and publishing FAIR data in taxonomic studies.more » « less