skip to main content


Title: Domain Adaptation Based Fault Detection in Label Imbalanced Cyberphysical Systems
In this paper we propose a data-driven fault detection framework for semi-supervised scenarios where labeled training data from the system under consideration (the “target”) is imbalanced (e.g. only relatively few labels are available from one of the classes), but data from a related system (the “source”) is readily available. An example of this situation is when a generic simulator is available, but needs to be tuned on a case-by-case basis to match the parameters of the actual system. The goal of this paper is to work with the statistical distribution of the data without necessitating system identification. Our main result shows that if the source and target domain are related by a linear transformation (a common assumption in domain adaptation), the problem of designing a classifier that minimizes a miss-classification loss over the joint source and target domains reduces to a convex optimization subject to a single (non-convex) equality constraint. This second-order equality constraint can be recast as a rank-1 optimization problem, where the rank constraint can be efficiently handled through a reweighted nuclear norm surrogate. These results are illustrated with a practical application: fault detection in additive manufacturing (industrial 3D printing). The proposed method is able to exploit simulation data (source domain) to substantially outperform classifiers tuned using only data from a single domain.  more » « less
Award ID(s):
1808381 1814631 1646121
NSF-PAR ID:
10186514
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2019 IEEE Conference on Control Technology and Applications (CCTA)
Page Range / eLocation ID:
142 to 147
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes a data-driven framework to address the worst-case estimation problem for switched discrete-time linear systems based solely on the measured data (input & output) and an ℓ ∞ bound over the noise. We start with the problem of designing a worst-case optimal estimator for a single system and show that this problem can be recast as a rank minimization problem and efficiently solved using standard relaxations of rank. Then we extend these results to the switched case. Our main result shows that, when the mode variable is known, the problem can be solved proceeding in a similar manner. To address the case where the mode variable is unmeasurable, we impose the hybrid decoupling constraint(HDC) in order to reformulate the original problem as a polynomial optimization which can be reduced to a tractable convex optimization using moments-based techniques. 
    more » « less
  2. Abstract We study the low-rank phase retrieval problem, where our goal is to recover a $d_1\times d_2$ low-rank matrix from a series of phaseless linear measurements. This is a fourth-order inverse problem, as we are trying to recover factors of a matrix that have been observed, indirectly, through some quadratic measurements. We propose a solution to this problem using the recently introduced technique of anchored regression. This approach uses two different types of convex relaxations: we replace the quadratic equality constraints for the phaseless measurements by a search over a polytope and enforce the rank constraint through nuclear norm regularization. The result is a convex program in the space of $d_1 \times d_2$ matrices. We analyze two specific scenarios. In the first, the target matrix is rank-$1$, and the observations are structured to correspond to a phaseless blind deconvolution. In the second, the target matrix has general rank, and we observe the magnitudes of the inner products against a series of independent Gaussian random matrices. In each of these problems, we show that anchored regression returns an accurate estimate from a near-optimal number of measurements given that we have access to an anchor matrix of sufficient quality. We also show how to create such an anchor in the phaseless blind deconvolution problem from an optimal number of measurements and present a partial result in this direction for the general rank problem. 
    more » « less
  3. This paper presents time-domain measurement data-based dynamic model parameter estimation for synchronous generators and inverter-based resources (IBRs). While prediction error method (PEM) is a well-known and popular method, it requires a good initial guess of parameters which should be in the domain of convergence. Recently, the system identification community has made significant progress in improving the PEM method by taking into consideration of the characteristics of the low-rank data Hankel matrix. In turn, an estimation problem can be formulated as a rank-constraint optimization problem, and further a difference of convex programming (DCP) problem. This paper adopted the data Hankel matrix fitting strategy and developed the problem formulation for the parameter estimation problems for synchronous generators and IBRs. These two examples are presented and the results are satisfying. 
    more » « less
  4. null (Ed.)
    Existing tensor completion formulation mostly relies on partial observations from a single tensor. However, tensors extracted from real-world data often are more complex due to: (i) Partial observation: Only a small subset of tensor elements are available. (ii) Coarse observation: Some tensor modes only present coarse and aggregated patterns (e.g., monthly summary instead of daily reports). In this paper, we are given a subset of the tensor and some aggregated/coarse observations (along one or more modes) and seek to recover the original fine-granular tensor with low-rank factorization. We formulate a coupled tensor completion problem and propose an efficient Multi-resolution Tensor Completion model (MTC) to solve the problem. Our MTC model explores tensor mode properties and leverages the hierarchy of resolutions to recursively initialize an optimization setup, and optimizes on the coupled system using alternating least squares. MTC ensures low computational and space complexity. We evaluate our model on two COVID-19 related spatio-temporal tensors. The experiments show that MTC could provide 65.20% and 75.79% percentage of fitness (PoF) in tensor completion with only 5% fine granular observations, which is 27.96% relative improvement over the best baseline. To evaluate the learned low-rank factors, we also design a tensor prediction task for daily and cumulative disease case predictions, where MTC achieves 50% in PoF and 30% relative improvements over the best baseline. 
    more » « less
  5. Low-rank matrix recovery is a fundamental problem in machine learning with numerous applications. In practice, the problem can be solved by convex optimization namely nuclear norm minimization, or by non-convex optimization as it is well-known that for low-rank matrix problems like matrix sensing and matrix completion, all local optima of the natural non-convex objectives are also globally optimal under certain ideal assumptions. In this paper, we study new approaches for matrix sensing in a semi-random model where an adversary can add any number of arbitrary sensing matrices. More precisely, the problem is to recover a low-rank matrix $X^\star$ from linear measurements $b_i = \langle A_i, X^\star \rangle$, where an unknown subset of the sensing matrices satisfies the Restricted Isometry Property (RIP) and the rest of the $A_i$'s are chosen adversarially. It is known that in the semi-random model, existing non-convex objectives can have bad local optima. To fix this, we present a descent-style algorithm that provably recovers the ground-truth matrix $X^\star$. For the closely-related problem of semi-random matrix completion, prior work [CG18] showed that all bad local optima can be eliminated by reweighting the input data. However, the analogous approach for matrix sensing requires reweighting a set of matrices to satisfy RIP, which is a condition that is NP-hard to check. Instead, we build on the framework proposed in [KLL$^+$23] for semi-random sparse linear regression, where the algorithm in each iteration reweights the input based on the current solution, and then takes a weighted gradient step that is guaranteed to work well locally. Our analysis crucially exploits the connection between sparsity in vector problems and low-rankness in matrix problems, which may have other applications in obtaining robust algorithms for sparse and low-rank problems. 
    more » « less