skip to main content

Title: Domain Adaptation Based Fault Detection in Label Imbalanced Cyberphysical Systems
In this paper we propose a data-driven fault detection framework for semi-supervised scenarios where labeled training data from the system under consideration (the “target”) is imbalanced (e.g. only relatively few labels are available from one of the classes), but data from a related system (the “source”) is readily available. An example of this situation is when a generic simulator is available, but needs to be tuned on a case-by-case basis to match the parameters of the actual system. The goal of this paper is to work with the statistical distribution of the data without necessitating system identification. Our main result shows that if the source and target domain are related by a linear transformation (a common assumption in domain adaptation), the problem of designing a classifier that minimizes a miss-classification loss over the joint source and target domains reduces to a convex optimization subject to a single (non-convex) equality constraint. This second-order equality constraint can be recast as a rank-1 optimization problem, where the rank constraint can be efficiently handled through a reweighted nuclear norm surrogate. These results are illustrated with a practical application: fault detection in additive manufacturing (industrial 3D printing). The proposed method is able to exploit simulation more » data (source domain) to substantially outperform classifiers tuned using only data from a single domain. « less
; ; ; ;
Award ID(s):
1808381 1814631 1646121
Publication Date:
Journal Name:
2019 IEEE Conference on Control Technology and Applications (CCTA)
Page Range or eLocation-ID:
142 to 147
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes a data-driven framework to address the worst-case estimation problem for switched discrete-time linear systems based solely on the measured data (input & output) and an ℓ ∞ bound over the noise. We start with the problem of designing a worst-case optimal estimator for a single system and show that this problem can be recast as a rank minimization problem and efficiently solved using standard relaxations of rank. Then we extend these results to the switched case. Our main result shows that, when the mode variable is known, the problem can be solved proceeding in a similar manner. To address the case where the mode variable is unmeasurable, we impose the hybrid decoupling constraint(HDC) in order to reformulate the original problem as a polynomial optimization which can be reduced to a tractable convex optimization using moments-based techniques.
  2. Abstract We study the low-rank phase retrieval problem, where our goal is to recover a $d_1\times d_2$ low-rank matrix from a series of phaseless linear measurements. This is a fourth-order inverse problem, as we are trying to recover factors of a matrix that have been observed, indirectly, through some quadratic measurements. We propose a solution to this problem using the recently introduced technique of anchored regression. This approach uses two different types of convex relaxations: we replace the quadratic equality constraints for the phaseless measurements by a search over a polytope and enforce the rank constraint through nuclear norm regularization. The result is a convex program in the space of $d_1 \times d_2$ matrices. We analyze two specific scenarios. In the first, the target matrix is rank-$1$, and the observations are structured to correspond to a phaseless blind deconvolution. In the second, the target matrix has general rank, and we observe the magnitudes of the inner products against a series of independent Gaussian random matrices. In each of these problems, we show that anchored regression returns an accurate estimate from a near-optimal number of measurements given that we have access to an anchor matrix of sufficient quality. We also showmore »how to create such an anchor in the phaseless blind deconvolution problem from an optimal number of measurements and present a partial result in this direction for the general rank problem.« less
  3. Existing tensor completion formulation mostly relies on partial observations from a single tensor. However, tensors extracted from real-world data often are more complex due to: (i) Partial observation: Only a small subset of tensor elements are available. (ii) Coarse observation: Some tensor modes only present coarse and aggregated patterns (e.g., monthly summary instead of daily reports). In this paper, we are given a subset of the tensor and some aggregated/coarse observations (along one or more modes) and seek to recover the original fine-granular tensor with low-rank factorization. We formulate a coupled tensor completion problem and propose an efficient Multi-resolution Tensor Completion model (MTC) to solve the problem. Our MTC model explores tensor mode properties and leverages the hierarchy of resolutions to recursively initialize an optimization setup, and optimizes on the coupled system using alternating least squares. MTC ensures low computational and space complexity. We evaluate our model on two COVID-19 related spatio-temporal tensors. The experiments show that MTC could provide 65.20% and 75.79% percentage of fitness (PoF) in tensor completion with only 5% fine granular observations, which is 27.96% relative improvement over the best baseline. To evaluate the learned low-rank factors, we also design a tensor prediction task for dailymore »and cumulative disease case predictions, where MTC achieves 50% in PoF and 30% relative improvements over the best baseline.« less
  4. In many machine learning applications, it is necessary to meaningfully aggregate, through alignment, different but related datasets. Optimal transport (OT)-based approaches pose alignment as a divergence minimization problem: the aim is to transform a source dataset to match a target dataset using the Wasserstein distance as a divergence measure. We introduce a hierarchical formulation of OT which leverages clustered structure in data to improve alignment in noisy, ambiguous, or multimodal settings. To solve this numerically, we propose a distributed ADMM algorithm that also exploits the Sinkhorn distance, thus it has an efficient computational complexity that scales quadratically with the size of the largest cluster. When the transformation between two datasets is unitary, we provide performance guarantees that describe when and how well aligned cluster correspondences can be recovered with our formulation, as well as provide worst-case dataset geometry for such a strategy. We apply this method to synthetic datasets that model data as mixtures of low-rank Gaussians and study the impact that different geometric properties of the data have on alignment. Next, we applied our approach to a neural decoding application where the goal is to predict movement directions and instantaneous velocities from populations of neurons in the macaque primarymore »motor cortex. Our results demonstrate that when clustered structure exists in datasets, and is consistent across trials or time points, a hierarchical alignment strategy that leverages such structure can provide significant improvements in cross-domain alignment.« less
  5. Modeling unknown systems from data is a precursor of system optimization and sequential decision making. In this paper, we focus on learning a Markov model from a single trajectory of states. Suppose that the transition model has a small rank despite having a large state space, meaning that the system admits a low-dimensional latent structure. We show that one can estimate the full transition model accurately using a trajectory of length that is proportional to the total number of states. We propose two maximum-likelihood estimation methods: a convex approach with nuclear norm regularization and a nonconvex approach with rank constraint. We explicitly derive the statistical rates of both estimators in terms of the Kullback-Leiber divergence and the [Formula: see text] error and also establish a minimax lower bound to assess the tightness of these rates. For computing the nonconvex estimator, we develop a novel DC (difference of convex function) programming algorithm that starts with the convex M-estimator and then successively refines the solution till convergence. Empirical experiments demonstrate consistent superiority of the nonconvex estimator over the convex one.