skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanical Characterization of Reduced Graphene Oxide Using AFM
Nanoindentation coupled with Atomic Force Microscopy was used to study stiffness, hardness, and the reduced Young’s modulus of reduced graphene oxide. Oxygen reduction on the graphene oxide sample was performed via LightScribe DVD burner reduction, a cost-effective approach with potential for large scale graphene production. The reduction of oxygen in the graphene oxide sample was estimated to about 10 percent using FTIR spectroscopic analysis. Images of the various samples were captured after each reduction cycle using Atomic Force Microscopy. Elastic and spectroscopic analyses were performed on the samples after each oxygen reduction cycle in the LightScribe, thus allowing for a comparison of stiffness, hardness, and the reduced Young’s modulus based on the number of reduction cycles. The highest values obtained were after the fifth and final reduction cycle, yielding a stiffness of 22.4 N/m, a hardness of 0.55 GPa, and a reduced Young’s modulus of 1.62 GPa as compared to a stiffness of 22.8 N/m, a hardness of 0.58 GPa, and a reduced Young’s modulus of 1.84 GPa for a commercially purchased graphene film made by CVD. This data was then compared to the expected values of pristine single layer graphene. Furthermore, two RC circuits were built, one using a parallel plate capacitors made of light scribed graphene on a kapton substrate (LSGC) and a second one using a CVD deposited graphene on aluminum (CVDGC). Their RC time constants and surface charge densities were compared.  more » « less
Award ID(s):
1655740
PAR ID:
10094762
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Advances in Condensed Matter Physics
Volume:
2019
ISSN:
1687-8108
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vanadium oxide V3O5 exhibits an insulator-to-metal transition (IMT) near 430 K, which is the highest value for all vanadium oxides exhibiting IMTs. This makes it interesting for advanced electronic applications. However, the properties of V3O5 have been little studied, and, in particular, there are no reports of experimentally determined mechanical properties. In this work, Young’s modulus of sputter-deposited V3O5 thin films has been determined by measuring the fundamental resonant frequency of V3O5-coated silicon microcantilevers using a laser beam deflection technique. After deposition, the films were characterized by x-ray diffraction, resistivity measurements, and atomic force microscopy. The value of Young’s modulus experimentally determined for V3O5 was 198 ± 14 GPa, which is slightly lower than the computationally derived values for bulk crystal V3O5. 
    more » « less
  2. null (Ed.)
    Flexural and thermomechanical properties of the epoxy-based carbon fiber composites (CFCs) on addition of single and binary nanoparticles (nanoclay and graphene) have been investigated. It was found that nanoclay acts more effectively in increasing the stiffness of the CFCs, whereas graphene is more effective in achieving higher strength. Nanoclay-added samples exhibited highest flexural (64.5 GPa) and storage (25.3 GPa) modulus among all types. Graphene-added samples showed highest improvement (by 21%) in flexural strength and exhibited most stable thermomechanical properties with highest energy dissipation capability (3.1 GPa loss modulus) in flexural test and dynamic mechanical analysis (DMA), respectively. By contrast, addition of binary nanoparticles reduced the stiffness and significantly increased the strain to failure (42%) of the composites. Optical microscopy and scanning electron microscopy indicated that addition of nanoparticles significantly reduced delamination and matrix cracking of the CFCs because of strong interfacial bonding and toughened matrix, respectively. 
    more » « less
  3. For this experimental study on evaporation of water from graphene, two graphene samples with different thickness and microstructure were used. Figure 1 shows the representative optical and scanning electron microscope (SEM) images of the two samples. Sample 1, shown in Figure 1a-b, is a 3 to 4 atomic layer of continuous graphene sheet grown on copper substrate via chemical vapor deposition (CVD) and was subsequently transferred to a quartz substrate using a wet chemical method reported previously [5]. The graphene thickness is at 1.2 nm to 1.4 nm, as measured by Atomic Force Microscopy. Sample 2, shown in Figure 1c-d, represents an inkjet-printed reduced graphene oxide on silicon and subsequently treated with a direct pulsed laser writing (DPLW) process for surface 3D-nanostructuring. The layer thickness is between 6 µm and 7 µm. 
    more » « less
  4. Graphene oxide (GO) films have a great potential for aerospace, electronics, and renewable energy applications due to their low cost and unique properties. For structural applications, they can achieve an exceptional combination of damping and stiffness. This study investigates the effect of packing density, reduction, and water removal on stiffness and damping of graphene oxide films. GO sheets dispersed in water are passed through a filter and deposited on a removable substrate. Through variations of the film fabrication process, films of both GO and reduced GO (rGO) are produced with varying levels of packing. Heat treatment is also used to remove the water in half of the films. The degree of packing is assessed through film density calculations. Microscopy as well as Raman and X-ray spectroscopy are used to measure the degree of packing while Dynamic Mechanical Analysis (DMA) is used to quantity mechanical damping and storage modulus of specimens in tension. Correlating mechanical properties to structure of films revealed new understanding of damping and stress transfer mechanisms in these materials. Optimal structures resulted in superior combinations of stiffness (18 GPa) and damping (0.14), potentially paving the way for using GO based films in advanced structural applications. 
    more » « less
  5. The advancement of graphene has created a need in exploring its properties for different applications. One way to explore its properties is by reducing its hydrophobicity. To overcome hydrophobicity of graphene, surfactants have been used in functionalization, hence improving the surface properties of the graphene monolayer. Therefore, investigating surfactant treatment for CVD graphene becomes useful in understanding the surface property effects on graphene. This study utilizes CVD graphene on silicon substrates. Its treatment was done with varying concentrations of Sodium Cholate (SC) for different treatment times. These samples were then characterized using Atomic Force Microscopy (AFM) to investigate the surface properties of the samples before and after treatment. To be optimized, the graphene must remain attached to the silicon substrate. The result shows that the integrity of the graphene, which is basically the sp2 structure, is preserved as there was no delamination from the substrate even after treatment for as long as 2 hours in 1% weight/volume concentration of the SC solution. 
    more » « less