A bistable [2]pseudorotaxane 1⊂CBPQT·4PF 6 and a bistable [2]rotaxane 2·4PF 6 have been synthesised to measure the height of an electrostatic barrier produced by double molecular oxidation (0 to +2). Both systems have monopyrrolotetrathiafulvalene (MPTTF) and oxyphenylene (OP) as stations for cyclobis(paraquat- p -phenylene) (CBPQT 4+ ). They have a large stopper at one end while the second stopper in 2 4+ is composed of a thioethyl (SEt) group and a thiodiethyleneglycol (TDEG) substituent, whereas in 1⊂CBPQT 4+ , the SEt group has been replaced with a less bulky thiomethyl (SMe) group. This seemingly small difference in the substituents on the MPTTF unit leads to profound changes when comparing the physical properties of the two systems allowing for the first measurement of the deslipping of the CBPQT 4+ ring over an MPTTF 2+ unit in the [2]pseudorotaxane. Cyclic voltammetry and 1 H NMR spectroscopy were used to investigate the switching mechanism for 1⊂CBPQT·MPTTF 4+ and 2·MPTTF 4+ , and it was found that CBPQT 4+ moves first to the OP station producing 1⊂CBPQT·OP 6+ and 2·OP 6+ , respectively, upon oxidation of the MPTTF unit. The kinetics of the complexation/decomplexation process occurring in 1⊂CBPQT·MPTTF 4+ and in 1⊂CBPQT·OP 6+ were studied, allowing the free energy of the transition state when CBPQT 4+ moves across a neutral MPTTF unit (17.0 kcal mol −1 ) or a di-oxidised MPTTF 2+ unit (24.0 kcal mol −1 ) to be determined. These results demonstrate that oxidation of the MPTTF unit to MPTTF 2+ increases the energy barrier that the CBPQT 4+ ring must overcome for decomplexation to occur by 7.0 kcal mol −1 . 
                        more » 
                        « less   
                    
                            
                            Salts accelerate the switching kinetics of a cyclobis(paraquat- p -phenylene) [2]rotaxane
                        
                    
    
            The rate at which the macrocyclic cyclobis(paraquat- p -phenylene) ring of a bistable [2]rotaxane moves from a tetrathiafulvalene station to an oxyphenylene station upon oxidation of the tetrathiafulvalene station is found to be increased in the presence of added salts. Compared to the salt-free case, 0.1 M solutions of a series of tetraalkylammonium hexafluorophosphate salts (R 4 N·PF 6 , R = H, Me, Et or n -Bu) and of tetrabutylammonium perchlorate ( n -Bu 4 N·ClO 4 ) all afford an increased switching rate, which is largest in the case of n -Bu 4 N·ClO 4 with smaller anions. Variation in the size of the ammonium cation has no significant effect. These results indicate that the addition of excess ions can be used as an accelerator to speed up shuttling processes in rotaxanes and catenanes based on the mobile cyclobis(paraquat- p -phenylene) ring, and that the choice of anion offers a convenient means of controlling the extent of this effect. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1709909
- PAR ID:
- 10095269
- Date Published:
- Journal Name:
- Organic & Biomolecular Chemistry
- Volume:
- 17
- Issue:
- 9
- ISSN:
- 1477-0520
- Page Range / eLocation ID:
- 2432 to 2441
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Mechanically interlocked molecules are a class of compounds used for controlling directional movement when barriers can be raised and lowered using external stimuli. Applied voltages can turn on redox states to alter electrostatic barriers but their use for directing motion requires knowledge of their impact on the kinetics. Herein, we make the first measurements on the movement of cyclobis(paraquat‐p‐phenylene) (CBPQT4+) across the radical‐cation state of monopyrrolotetrathiafulvalene (MPTTF) in a [2]rotaxane using variable scan‐rate electrochemistry. The [2]rotaxane is designed in a way that directs CBPQT4+to a high‐energy co‐conformation upon oxidation of MPTTF to either the radical cation (MPTTF⋅+) or the dication (MPTTF2+).1H NMR spectroscopic investigations carried out in acetonitrile at 298 K showed direct interconversion to the thermodynamically more stable ground‐state co‐conformation with CBPQT4+moving across the oxidized MPTTF2+electrostatic barrier. The electrochemical studies revealed that interconversion takes place by movement of CBPQT4+across both the MPTTF•+(19.3 kcal mol−1) and MPTTF2+(18.7 kcal mol−1) barriers. The outcome of our studies shows that MPTTF has three accessible redox states that can be used to kinetically control the movement of the ring component in mechanically interlocked molecules.more » « less
- 
            Herein is reported the structural characterization and scalable preparation of the elusive iron–phosphido complex FpP( t Bu)(F) (2-F, Fp = (Fe(η 5 -C 5 H 5 )(CO) 2 )) and its precursor FpP( t Bu)(Cl) (2-Cl) in 51% and 71% yields, respectively. These phosphide complexes are proposed to be relevant to an organoiron catalytic cycle for phosphinidene transfer to electron-deficient alkenes. Examination of their properties led to the discovery of a more efficient catalytic system involving the simple, commercially available organoiron catalyst Fp 2 . This improved catalysis also enabled the preparation of new phosphiranes with high yields ( t BuPCH 2 CHR; R = CO 2 Me, 41%; R = CN, 83%; R = 4-biphenyl, 73%; R = SO 2 Ph, 71%; R = POPh 2 , 70%; R = 4-pyridyl, 82%; R = 2-pyridyl, 67%; R = PPh 3 + , 64%) and good diastereoselectivity, demonstrating the feasibility of the phosphinidene group-transfer strategy in synthetic chemistry. Experimental and theoretical studies suggest that the original catalysis involves 2-X as the nucleophile, while for the new Fp 2 -catalyzed reaction they implicate a diiron–phosphido complex Fp 2 (P t Bu), 4, as the nucleophile which attacks the electron-deficient olefin in the key first P–C bond-forming step. In both systems, the initial nucleophilic attack may be accompanied by favorable five-membered ring formation involving a carbonyl ligand, a (reversible) pathway competitive with formation of the three-membered ring found in the phosphirane product. A novel radical mechanism is suggested for the new Fp 2 -catalyzed system.more » « less
- 
            Functionalization of planar aromatic rings is very straightforward, up scalable, and economical in comparison with many azole, caged, linear or cyclic structures. In our present work, a facile synthesis of N , N ′-(4,6-dinitro-1,3-phenylene)dinitramide (3) is obtained by a single-step nitration of 4,6-dinitrobenzene-1,3-diamine (2). Compound 3 exhibits a surprisingly high density of 1.90 g cm −3 at 100 K (1.87 g cm −3 at 298 K). Its reactions with bases result in the formation of a series of energetic salts (4–7) which exhibit relatively high densities (1.74 to 1.83 g cm −3 ), and acceptable thermal sensitivities (177 to 253 °C). Energetic salt formation increases intermolecular hydrogen bonding while the planarity of the aromatic ring maximizes weak non-covalent interactions (π-stacking, cation/π, anion-π, X-H/π, etc. ,). The synergetic effect of these stabilizing interactions plays a crucial role in increasing thermal stability and decreasing sensitivity toward the external stimuli. Overall, these easily accessible new energetic compounds exhibit high densities and good denotation properties with potential applications as new high-energy materials.more » « less
- 
            The crystal structures of ligand precursor bis(imidazolium) salts 1,1′-methylenebis(3- tert -butylimidazolium) dibromide monohydrate, C 15 H 26 N 4 + ·2Br − ·H 2 O or [ t Bu NHC 2 Me][Br] 2 ·H 2 O, 1,1′-(ethane-1,2-diyl)bis(3- tert -butylimidazolium) dibromide dihydrate, C 16 H 28 N 4 + ·2Br − ·2H 2 O or [ t Bu NHC 2 Et][Br] 2 ·2H 2 O, 1,1′-methylenebis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide dihydrate, C 25 H 30 N 4 2+ ·2Br − ·2H 2 O or [ Mes NHC 2 Me][Br] 2 ·2H 2 O, and 1,1′-(ethane-1,2-diyl)bis[3-(2,4,6-trimethylphenyl)imidazolium] dibromide tetrahydrate, C 26 H 32 N 4 2+ ·2Br − ·4H 2 O or [ Mes NHC 2 Et][Br] 2 ·4H 2 O, are reported. At 293 K, [ t Bu NHC 2 Me][Br] 2 ·H 2 O crystallizes in the P 2 1 / c space group, while [ t Bu NHC 2 Et][Br] 2 ·2H 2 O crystallizes in the P 2 1 / n space group at 100 K. At 112 K, [ Mes NHC 2 Me][Br] 2 ·2H 2 O crystallizes in the orthorhombic space group Pccn while [ Mes NHC 2 Et][Br] 2 ·4H 2 O crystallizes in the P 2 1 / c space group at 100 K. Bond distances and angles within the imidazolium rings are generally comparable among the four structures. All four bis(imidazolium) salts co-crystallize with one to four molecules of water.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    