Abstract Complexation between a viologen radical cation (V.+) and cyclobis(paraquat‐p‐phenylene) diradical dication (CBPQT2(.+)) has been investigated and utilized extensively in the construction of mechanically interlocked molecules (MIMs) and artificial molecular machines (AMMs). The selective recognition of a pair ofV.+using radical‐pairing interactions, however, remains a formidable challenge. Herein, we report the efficient encapsulation of two methyl viologen radical cations (MV.+) in a size‐matched bisradical dicationic host — namely, cyclobis(paraquat‐2,6‐naphthalene)2(.+), i.e.,CBPQN2(.+). Central to this dual recognition process was the choice of 2,6‐bismethylenenaphthalene linkers for incorporation into the bisradical dicationic host. They provide the space between the two bipyridinium radical cations inCBPQN2(.+)suitable for binding twoMV.+with relatively short (3.05–3.25 Å) radical‐pairing distances. The size‐matched bisradical dicationic host was found to exhibit highly selective and cooperative association with the twoMV.+in MeCN at room temperature. The formation of the tetrakisradical tetracationic inclusion complex — namely, [(MV)2⊂CBPQN]4(.+)– in MeCN was confirmed by VT1H NMR, as well as by EPR spectroscopy. The solid‐state superstructure of [(MV)2⊂CBPQN]4(.+)reveals an uneven distribution of the binding distances (3.05, 3.24, 3.05 Å) between the three differentV.+, suggesting that localization of the radical‐pairing interactions has a strong influence on the packing of the twoMV.+inside the bisradical dicationic host. Our findings constitute a rare example of binding two radical guests with high affinity and cooperativity using host‐guest radical‐pairing interactions. Moreover, they open up possibilities of harnessing the tetrakisradical tetracationic inclusion complex as a new, orthogonal and redox‐switchable recognition motif for the construction of MIMs and AMMs.
more »
« less
Insight from Electrochemical Analysis in the Radical Cation State of a Monopyrrolotetrathiafulvalene‐Based [2]Rotaxane
Abstract Mechanically interlocked molecules are a class of compounds used for controlling directional movement when barriers can be raised and lowered using external stimuli. Applied voltages can turn on redox states to alter electrostatic barriers but their use for directing motion requires knowledge of their impact on the kinetics. Herein, we make the first measurements on the movement of cyclobis(paraquat‐p‐phenylene) (CBPQT4+) across the radical‐cation state of monopyrrolotetrathiafulvalene (MPTTF) in a [2]rotaxane using variable scan‐rate electrochemistry. The [2]rotaxane is designed in a way that directs CBPQT4+to a high‐energy co‐conformation upon oxidation of MPTTF to either the radical cation (MPTTF⋅+) or the dication (MPTTF2+).1H NMR spectroscopic investigations carried out in acetonitrile at 298 K showed direct interconversion to the thermodynamically more stable ground‐state co‐conformation with CBPQT4+moving across the oxidized MPTTF2+electrostatic barrier. The electrochemical studies revealed that interconversion takes place by movement of CBPQT4+across both the MPTTF•+(19.3 kcal mol−1) and MPTTF2+(18.7 kcal mol−1) barriers. The outcome of our studies shows that MPTTF has three accessible redox states that can be used to kinetically control the movement of the ring component in mechanically interlocked molecules.
more »
« less
- Award ID(s):
- 2403941
- PAR ID:
- 10642367
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 30
- Issue:
- 55
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bistable [2]pseudorotaxane 1⊂CBPQT·4PF 6 and a bistable [2]rotaxane 2·4PF 6 have been synthesised to measure the height of an electrostatic barrier produced by double molecular oxidation (0 to +2). Both systems have monopyrrolotetrathiafulvalene (MPTTF) and oxyphenylene (OP) as stations for cyclobis(paraquat- p -phenylene) (CBPQT 4+ ). They have a large stopper at one end while the second stopper in 2 4+ is composed of a thioethyl (SEt) group and a thiodiethyleneglycol (TDEG) substituent, whereas in 1⊂CBPQT 4+ , the SEt group has been replaced with a less bulky thiomethyl (SMe) group. This seemingly small difference in the substituents on the MPTTF unit leads to profound changes when comparing the physical properties of the two systems allowing for the first measurement of the deslipping of the CBPQT 4+ ring over an MPTTF 2+ unit in the [2]pseudorotaxane. Cyclic voltammetry and 1 H NMR spectroscopy were used to investigate the switching mechanism for 1⊂CBPQT·MPTTF 4+ and 2·MPTTF 4+ , and it was found that CBPQT 4+ moves first to the OP station producing 1⊂CBPQT·OP 6+ and 2·OP 6+ , respectively, upon oxidation of the MPTTF unit. The kinetics of the complexation/decomplexation process occurring in 1⊂CBPQT·MPTTF 4+ and in 1⊂CBPQT·OP 6+ were studied, allowing the free energy of the transition state when CBPQT 4+ moves across a neutral MPTTF unit (17.0 kcal mol −1 ) or a di-oxidised MPTTF 2+ unit (24.0 kcal mol −1 ) to be determined. These results demonstrate that oxidation of the MPTTF unit to MPTTF 2+ increases the energy barrier that the CBPQT 4+ ring must overcome for decomplexation to occur by 7.0 kcal mol −1 .more » « less
-
ABSTRACT Access to benzofuran‐2(3H)‐one derivatives from readily available substrates under mild conditions is crucial in the pharmaceutical and plastics industries. We identified (Z)‐3‐(2‐phenylhydrazineylidene)benzofuran‐2(3H)‐one (P) during the recrystallization of (E)‐2‐(2,2‐dichloro‐1‐(phenyldiazenyl)vinyl)phenol using a 96% ethanol solution. The mechanism of the unexpected substrate conversion leading toPis investigated using density functional calculations. The computations revealed that ethanol is required to initiate the reaction viaTS1E, which involves a concerted deprotonation of ethanol by the basic diaza group of the substrate and an ethoxy group attacking the electrophilic center (Cl2C), with an energy barrier of 28.3 kcal/mol. The resulting intermediate (I1E) is calculated to be unstable and can yield a cyclic chloroacetal adduct with a lower energy barrier of 2.2 kcal/mol via the ring‐closure transition state (TS2E). In the absence of water, the next steps are impossible because water is required to cleave the ether bond, yieldingP. A small amount of water (4% of the recrystallization solvent) can promote further transformation ofI2Evia the transition statesTS3E(∆G‡ = 11.1 kcal/mol) andTS4E(∆G‡ = 10.5 kcal/mol). A comparison of the ethanol/water‐ and only water‐promoted free energy profiles shows that the presence of ethanol is crucial for lowering the energy barriers (by about 5 kcal/mol) for the initial two steps leading to the cyclic chloroacetal (I2E), whereas water is then required to initiate product formation.more » « less
-
null (Ed.)Of particular interest in radiation-induced charge transfer processes in DNA is the extent of hole localization immediately after ionization and subsequent relaxation. To address this, we considered double stranded oligomers containing guanine (G) and 8-oxoguanine (8OG), i.e. , ds(5′-GGG-3′) and ds(5′-G8OGG-3′) in B-DNA conformation. Using DFT, we calculated a variety of properties, viz. , vertical and adiabatic ionization potentials, spin density distributions in oxidized stacks, solvent and solute reorganization energies and one-electron oxidation potential ( E 0 ) in the aqueous phase. Calculations for the vertical state of the -GGG- cation radical showed that the spin was found mainly (67%) on the middle G. However, upon relaxation to the adiabatic -GGG- cation radical, the spin localized (96%) on the 5′-G, as observed in experiments. Hole localizations on the middle G and 3′-G were higher in energy by 0.5 kcal mol −1 and 0.4 kcal mol −1 , respectively, than that of 5′-G. In the -G8OGG- cation radical, the spin localized only on the 8OG in both vertical and adiabatic states. The calculated vertical ionization potentials of -GGG- and -G8OGG- stacks were found to be lower than that of the vertical ionization potential of a single G in DNA. The calculated E 0 values of -GGG- and -G8OGG- stacks are 1.15 and 0.90 V, respectively, which owing to stacking effects are substantially lower than the corresponding experimental E 0 values of their monomers (1.49 and 1.18 V, respectively). SOMO to HOMO level switching is observed in these oxidized stacks. Consequently, our calculations predict that local double oxidations in DNA will form triplet diradical states, which are especially significant for high LET radiations.more » « less
-
Abstract Benzylic and allylic electrophiles are well known to react faster in SN2 reactions than aliphatic electrophiles, but the origins of this enhanced reactivity are still being debated. Galabov, Wu, and Allen recently proposed that electrostatic interactions in the transition state between the nucleophile (Nu) and the sp2carbon (C2) adjacent to the electrophilic carbon (C1) play a key role. To test this secondary electrostatic hypothesis, molecular rotors were designed that form similar through‐space electrostatic interactions with C2 in their bond rotation transition states without forming bonds to C1. This largely eliminates the alternative explanation of stabilizing conjugation effects between C1 and C2 in the transition state. The rotor barriers were strongly correlated with the experimentally measured SN2 free energy. Notably, rotors where C2 was sp2or sp‐hybridized had barriers that were consistently 0.5–2.0 kcal mol−1lower than those for rotors where C2 was sp3‐hybridized. Computational studies of atomic charges were consistent with the formation of stabilizing secondary electrostatic interactions. Further confirmation came from observing the benzylic effect in rotors where the first atom was varied, including oxygen, sulfur, nitrogen, and sp2‐carbon. In summary, these studies provided strong experimental support for the role of secondary electrostatic interactions in the SN2 reaction.more » « less
An official website of the United States government
