skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying the barrier for the movement of cyclobis(paraquat- p -phenylene) over the dication of monopyrrolotetrathiafulvalene
A bistable [2]pseudorotaxane 1⊂CBPQT·4PF 6 and a bistable [2]rotaxane 2·4PF 6 have been synthesised to measure the height of an electrostatic barrier produced by double molecular oxidation (0 to +2). Both systems have monopyrrolotetrathiafulvalene (MPTTF) and oxyphenylene (OP) as stations for cyclobis(paraquat- p -phenylene) (CBPQT 4+ ). They have a large stopper at one end while the second stopper in 2 4+ is composed of a thioethyl (SEt) group and a thiodiethyleneglycol (TDEG) substituent, whereas in 1⊂CBPQT 4+ , the SEt group has been replaced with a less bulky thiomethyl (SMe) group. This seemingly small difference in the substituents on the MPTTF unit leads to profound changes when comparing the physical properties of the two systems allowing for the first measurement of the deslipping of the CBPQT 4+ ring over an MPTTF 2+ unit in the [2]pseudorotaxane. Cyclic voltammetry and 1 H NMR spectroscopy were used to investigate the switching mechanism for 1⊂CBPQT·MPTTF 4+ and 2·MPTTF 4+ , and it was found that CBPQT 4+ moves first to the OP station producing 1⊂CBPQT·OP 6+ and 2·OP 6+ , respectively, upon oxidation of the MPTTF unit. The kinetics of the complexation/decomplexation process occurring in 1⊂CBPQT·MPTTF 4+ and in 1⊂CBPQT·OP 6+ were studied, allowing the free energy of the transition state when CBPQT 4+ moves across a neutral MPTTF unit (17.0 kcal mol −1 ) or a di-oxidised MPTTF 2+ unit (24.0 kcal mol −1 ) to be determined. These results demonstrate that oxidation of the MPTTF unit to MPTTF 2+ increases the energy barrier that the CBPQT 4+ ring must overcome for decomplexation to occur by 7.0 kcal mol −1 .  more » « less
Award ID(s):
2105848
PAR ID:
10352727
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Organic & Biomolecular Chemistry
Volume:
20
Issue:
11
ISSN:
1477-0520
Page Range / eLocation ID:
2233 to 2248
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rate at which the macrocyclic cyclobis(paraquat- p -phenylene) ring of a bistable [2]rotaxane moves from a tetrathiafulvalene station to an oxyphenylene station upon oxidation of the tetrathiafulvalene station is found to be increased in the presence of added salts. Compared to the salt-free case, 0.1 M solutions of a series of tetraalkylammonium hexafluorophosphate salts (R 4 N·PF 6 , R = H, Me, Et or n -Bu) and of tetrabutylammonium perchlorate ( n -Bu 4 N·ClO 4 ) all afford an increased switching rate, which is largest in the case of n -Bu 4 N·ClO 4 with smaller anions. Variation in the size of the ammonium cation has no significant effect. These results indicate that the addition of excess ions can be used as an accelerator to speed up shuttling processes in rotaxanes and catenanes based on the mobile cyclobis(paraquat- p -phenylene) ring, and that the choice of anion offers a convenient means of controlling the extent of this effect. 
    more » « less
  2. ABSTRACT Access to benzofuran‐2(3H)‐one derivatives from readily available substrates under mild conditions is crucial in the pharmaceutical and plastics industries. We identified (Z)‐3‐(2‐phenylhydrazineylidene)benzofuran‐2(3H)‐one (P) during the recrystallization of (E)‐2‐(2,2‐dichloro‐1‐(phenyldiazenyl)vinyl)phenol using a 96% ethanol solution. The mechanism of the unexpected substrate conversion leading toPis investigated using density functional calculations. The computations revealed that ethanol is required to initiate the reaction viaTS1E, which involves a concerted deprotonation of ethanol by the basic diaza group of the substrate and an ethoxy group attacking the electrophilic center (Cl2C), with an energy barrier of 28.3 kcal/mol. The resulting intermediate (I1E) is calculated to be unstable and can yield a cyclic chloroacetal adduct with a lower energy barrier of 2.2 kcal/mol via the ring‐closure transition state (TS2E). In the absence of water, the next steps are impossible because water is required to cleave the ether bond, yieldingP. A small amount of water (4% of the recrystallization solvent) can promote further transformation ofI2Evia the transition statesTS3E(∆G = 11.1 kcal/mol) andTS4E(∆G = 10.5 kcal/mol). A comparison of the ethanol/water‐ and only water‐promoted free energy profiles shows that the presence of ethanol is crucial for lowering the energy barriers (by about 5 kcal/mol) for the initial two steps leading to the cyclic chloroacetal (I2E), whereas water is then required to initiate product formation. 
    more » « less
  3. Abstract Mechanically interlocked molecules are a class of compounds used for controlling directional movement when barriers can be raised and lowered using external stimuli. Applied voltages can turn on redox states to alter electrostatic barriers but their use for directing motion requires knowledge of their impact on the kinetics. Herein, we make the first measurements on the movement of cyclobis(paraquat‐p‐phenylene) (CBPQT4+) across the radical‐cation state of monopyrrolotetrathiafulvalene (MPTTF) in a [2]rotaxane using variable scan‐rate electrochemistry. The [2]rotaxane is designed in a way that directs CBPQT4+to a high‐energy co‐conformation upon oxidation of MPTTF to either the radical cation (MPTTF⋅+) or the dication (MPTTF2+).1H NMR spectroscopic investigations carried out in acetonitrile at 298 K showed direct interconversion to the thermodynamically more stable ground‐state co‐conformation with CBPQT4+moving across the oxidized MPTTF2+electrostatic barrier. The electrochemical studies revealed that interconversion takes place by movement of CBPQT4+across both the MPTTF•+(19.3 kcal mol−1) and MPTTF2+(18.7 kcal mol−1) barriers. The outcome of our studies shows that MPTTF has three accessible redox states that can be used to kinetically control the movement of the ring component in mechanically interlocked molecules. 
    more » « less
  4. Experimentally conducted reactions between CO 2 and various substrates ( i.e. , ethylenediamine (EDA), ethanolamine (ETA), ethylene glycol (EG), mercaptoethanol (ME), and ethylene dithiol (EDT)) are considered in a computational study. The reactions were previously conducted under harsh conditions utilizing toxic metal catalysts. We computationally utilize Brønsted acidic ionic liquid (IL) [Et 2 NH 2 ]HSO 4 as a catalyst aiming to investigate and propose ‘greener’ pathways for future experimental studies. Computations show that EDA is the best to fixate CO 2 among the tested substrates: the nucleophilic EDA attack on CO 2 is calculated to have a very small energy barrier to overcome (TS1EDA, Δ G ‡ = 1.4 kcal mol −1 ) and form I1EDA (carbamic acid adduct). The formed intermediate is converted to cyclic urea (PEDA, imidazolidin-2-one) via ring closure and dehydration of the concerted transition state (TS2EDA, Δ G ‡ = 32.8 kcal mol −1 ). Solvation model analysis demonstrates that nonpolar solvents (hexane, THF) are better for fixing CO 2 with EDA. Attaching electron-donating and -withdrawing groups to EDA does not reduce the energy barriers. Modifying the IL via changing the anion part (HSO 4 − ) central S atom with 6 A and 5 A group elements (Se, P, and As) shows that a Se-based IL can be utilized for the same purpose. Molecular dynamics (MD) simulations reveal that the IL ion pairs can hold substrates and CO 2 molecules via noncovalent interactions to ease nucleophilic attack on CO 2 . 
    more » « less
  5. Abstract Reaction of {LiC6H2−2,4,6‐Cyp3⋅Et2O}2(Cyp=cyclopentyl) (1) of the new dispersion energy donor (DED) ligand, 2,4,6‐triscyclopentylphenyl with SnCl2afforded a mixture of the distannene {Sn(C6H2−2,4,6‐Cyp3)2}2(2), and the cyclotristannane {Sn(C6H2−2,4,6‐Cyp3)2}3(3).2is favored in solution at higher temperature (345 K or above) whereas3is preferred near 298 K. Van't Hoff analysis revealed the3to2conversion has a ΔH=33.36 kcal mol−1and ΔS=0.102 kcal mol−1 K−1, which gives a ΔG300 K=+2.86 kcal mol−1, showing that the conversion of3to2is an endergonic process. Computational studies show that DED stabilization in3is −28.5 kcal mol−1per {Sn(C6H2−2,4,6‐Cyp3)2unit, which exceeds the DED energy in2of −16.3 kcal mol−1per unit. The data clearly show that dispersion interactions are the main arbiter of the3to2equilibrium. Both2and3possess large dispersion stabilization energies which suppress monomer dissociation (supported by EDA results). 
    more » « less