skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Oxidative Additions to Ti(IV) in [(dadi) 4– ]Ti IV (THF) Involve Carbon–Carbon Bond Formation and Redox-Noninnocent Behavior
Award ID(s):
1664580
PAR ID:
10095343
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Organometallics
Volume:
38
Issue:
7
ISSN:
0276-7333
Page Range / eLocation ID:
1502 to 1515
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Interstitial patterning of nuclear spins is a nascent design principle for controlling electron spin superposition lifetimes in open-shell complexes and solid-state defects. Herein we report the first test of the impact of the patterning principle on ligand-based nuclear spin dynamics. We test how substitutional patterning of 1H and 79/81Br nuclear spins on ligands modulates proton nuclear spin dynamics in the ligand shell of metal complexes. To do so, we studied the 1H nuclear magnetic resonance relaxation times (T1 and T2) of a series of eight polybrominated catechol ligands and six complexes formed by coordination of the ligands to a Ti(IV) ion. These studies reveal that 1H T1 values can be enhanced in the individual ligands by a factor of 4 (from 10.8(3) to 43(5) s) as a function of substitution pattern, reaching the maximum value for 3,4,6-tribromocatechol. The T2 for 1H is also enhanced by a factor of 4, varying by ∼14 s across the series. When complexed, the impact of the patterning design strategy on nuclear spin dynamics is amplified and 1H T1 and T2 values vary by over an order of magnitude. Importantly, the general trends observed in the ligands also match those when complexed. Hence, these results demonstrate a new design principle to control 1H spin dynamics in metal complexes through pattern-based design strategies in the ligand shell. 
    more » « less
  2. null (Ed.)
    The addition of tert -butyl hydroperoxide ( t BuOOH) to two structurally related Mn II complexes containing N,N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me-DPEN) and N,N -bis(6-methyl-2-pyridylmethyl)propane-1,2-diamine (6-Me-DPPN) results in the formation of high-valent bis-oxo complexes, namely di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) dihydrate, [Mn(C 16 H 22 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2H 2 O or {[Mn IV (N 4 (6-Me-DPEN))] 2 ( μ -O) 2 }(2BPh 4 )(2H 2 O) ( 1 ) and di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)propane-1,3-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) diethyl ether disolvate, [Mn(C 17 H 24 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2C 4 H 10 O or {[Mn IV (N 4 (6-MeDPPN))] 2 ( μ -O) 2 }(2BPh 4 )(2Et 2 O) ( 2 ). Complexes 1 and 2 both contain the `diamond core' motif found previously in a number of iron, copper, and manganese high-valent bis-oxo compounds. The flexibility in the propyl linker in the ligand scaffold of 2 , as compared to that of the ethyl linker in 1 , results in more elongated Mn—N bonds, as one would expect. The Mn—Mn distances and Mn—O bond lengths support an Mn IV oxidation state assignment for the Mn ions in both 1 and 2 . The angles around the Mn centers are consistent with the local pseudo-octahedral geometry. 
    more » « less