skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Honeybee Detection and Pose Estimation using Convolutional Neural Networks
The ability to automatize the analysis of video for monitoring animals and insects is of great interest for behavior science and ecology. In particular, honeybees play a crucial role in agriculture as natural pollinators. However, recent studies has shown that phenomena such as colony collapse disorder are causing the loss of many colonies. Due to the high number of interacting factors to explain these events, a multi-faceted analysis of the bees in their environment is required. We focus in our work in developing tools to help model and understand their behavior as individuals, in relation with the health and performance of the colony. In this paper, we report the development of a new system for the detection, localization and tracking of honeybee body parts from video on the entrance ramp of the colony. The proposed system builds on the recent advances in Convolutional Neural Networks (CNN) for Human pose estimation and evaluates the suitability for the detection of honeybee pose as shown in Figure 1. This opens the door for novel animal behavior analysis systems that take advantage of the precise detection and tracking of the insect pose.  more » « less
Award ID(s):
1707355
PAR ID:
10095766
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Congrès Reconnaissance des Formes, Image, Apprentissage et Perception (RFIAP)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The LabelBee system is a web application designed to facilitate the collection, annotation and analysis of large amounts of honeybee behavior data from video monitoring. It is developed as part of NSF BIGDATA project “Large-scale multi-parameter analysis of honeybee behavior in their natural habitat”, where we analyze continuous video of the entrance of bee colonies. Due to the large volume of data and its complexity, LabelBee provides advanced Artificial Intelligence and visualization capabilities to enable the construction of good quality datasets necessary for the discovery of complex behavior patterns. It integrates several levels of information: raw video, honeybee positions, decoded tags, individual trajectories and behavior events (entrance/exit, presence of pollen, fanning, etc.). This integration enables the combination of manual and automatic processing by the biologist end-users, who also share and correct their annotation through a centralized server. These annotations are used by the Computer Scientists to create new automatic models, and improve the quality of the automatic modules. The data constructed by this semi-automatized approach can then be exported for the analytic part, which is taking place on the same server using Jupyter notebooks for the extraction and exploration of behavior patterns. 
    more » « less
  2. We revisit the performance of a canonical system design for edge-assisted AR that simply combines off-the-shelf H.264 video encoding with a standard object tracking technique. Our experimental analysis shows that the simple canonical design for edge-assisted object detection can achieve within 3.07%/1.51% of the accuracy of ideal offloading (which assumes infinite network bandwidth and the total network transmission time of a single RTT) under LTE/5G mmWave networks. Our findings suggest that recent trend towards sophisticated system architecture design for edge-assisted AR appears unnecessary. We provide insights for why video compression plus on-device object tracking is so effective in edge-assisted object detection, draw implications to edge-assisted AR research, and pose open problems that warrant further investigation into this surprise finding. 
    more » « less
  3. Timely detection of horse pain is important for equine welfare. Horses express pain through their facial and body behavior, but may hide signs of pain from unfamiliar human observers. In addition, collecting visual data with detailed annotation of horse behavior and pain state is both cumbersome and not scalable. Consequently, a pragmatic equine pain classification system would use video of the unobserved horse and weak labels. This paper proposes such a method for equine pain classification by using multi-view surveillance video footage of unobserved horses with induced orthopaedic pain, with temporally sparse video level pain labels. To ensure that pain is learned from horse body language alone, we first train a self-supervised generative model to disentangle horse pose from its appearance and background before using the disentangled horse pose latent representation for pain classification. To make best use of the pain labels, we develop a novel loss that formulates pain classification as a multi-instance learning problem. Our method achieves pain classification accuracy better than human expert performance with 60% accuracy. The learned latent horse pose representation is shown to be viewpoint covariant, and disentangled from horse appearance. Qualitative analysis of pain classified segments shows correspondence between the pain symptoms identified by our model, and equine pain scales used in veterinary practice. 
    more » « less
  4. We present a novel system for the automatic video monitoring of honey bee foraging activity at the hive entrance. This monitoring system is built upon convolutional neural networks that perform multiple animal pose estimation without the need for marking. This precise detection of honey bee body parts is a key element of the system to provide detection of entrance and exit events at the entrance of the hive including accurate pollen detection. A detailed evaluation of the quality of the detection and a study of the effect of the parameters are presented. The complete system also integrates identification of barcode marked bees, which enables the monitoring at both aggregate and individual levels. The results obtained on multiple days of video recordings show the applicability of the approach for large-scale deployment. This is an important step forward for the understanding of complex behaviors exhibited by honey bees and the automatic assessment of colony health. 
    more » « less
  5. The paper develops datasets and methods to assess student participation in real-life collaborative learning environments. In collaborative learning environments, students are organized into small groups where they are free to interact within their group. Thus, students can move around freely causing issues with strong pose variation, move out and re-enter the camera scene, or face away from the camera. We formulate the problem of assessing student participation into two subproblems: (i) student group detection against strong background interference from other groups, and (ii) dynamic participant tracking within the group. A massive independent testing dataset of 12,518,250 student label instances, of total duration of 21 hours and 22 minutes of real-life videos, is used for evaluating the performance of our proposed method for student group detection. The proposed method of using multiple image representations is shown to perform equally or better than YOLO on all video instances. Over the entire dataset, the proposed method achieved an F1 score of 0.85 compared to 0.80 for YOLO. Following student group detection, the paper presents the development of a dynamic participant tracking system for assessing student group participation through long video sessions. The proposed dynamic participant tracking system is shown to perform exceptionally well, missing a student in just one out of 35 testing videos. In comparison, a stateof- the-art method fails to track students in 14 out of the 35 testing videos. The proposed method achieves 82.3% accuracy on an independent set of long, real-life collaborative videos. 
    more » « less