skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Iterated weak dominance and interval‐dominance supermodular games
This paper extends Milgrom and Robert's treatment of supermodular games in two ways. It points out that their main characterization result holds under a weaker assumption. It refines the arguments to provide bounds on the set of strategies that survive iterated deletion of weakly dominated strategies. I derive the bounds by iterating the best‐response correspondence. I give conditions under which they are independent of the order of deletion of dominated strategies. The results have implications for equilibrium selection and dynamic stability in games.  more » « less
Award ID(s):
1757250
PAR ID:
10095780
Author(s) / Creator(s):
Date Published:
Journal Name:
Theoretical economics
Volume:
14
Issue:
1
ISSN:
1555-7561
Page Range / eLocation ID:
71--102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Francisco Ruiz, Jennifer Dy (Ed.)
    We study the sample complexity of identifying an approximate equilibrium for two-player zero-sum n × 2 matrix games. That is, in a sequence of repeated game plays, how many rounds must the two players play before reaching an approximate equilibrium (e.g., Nash)? We derive instance-dependent bounds that define an ordering over game matrices that captures the intuition that the dynamics of some games converge faster than others. Specifically, we consider a stochastic observation model such that when the two players choose actions i and j, respectively, they both observe each other’s played actions and a stochastic observation Xij such that E [Xij ] = Aij . To our knowledge, our work is the first case of instance-dependent lower bounds on the number of rounds the players must play before reaching an approximate equilibrium in the sense that the number of rounds depends on the specific properties of the game matrix A as well as the desired accuracy. We also prove a converse statement: there exist player strategies that achieve this lower bound. 
    more » « less
  2. Most of the literature on learning in games has focused on the restrictive setting where the underlying repeated game does not change over time. Much less is known about the convergence of no-regret learning algorithms in dynamic multiagent settings. In this paper, we characterize the convergence of optimistic gradient descent (OGD) in time-varying games. Our framework yields sharp convergence bounds for the equilibrium gap of OGD in zero-sum games parameterized on natural variation measures of the sequence of games, subsuming known results for static games. Furthermore, we establish improved second-order variation bounds under strong convexity-concavity, as long as each game is repeated multiple times. Our results also extend to time-varying general-sum multi-player games via a bilinear formulation of correlated equilibria, which has novel implications for meta-learning and for obtaining refined variation-dependent regret bounds, addressing questions left open in prior papers. Finally, we leverage our framework to also provide new insights on dynamic regret guarantees in static games. 1 
    more » « less
  3. Abstract In this work we initiate the study of position based quantum cryptography (PBQC) from the perspective of geometric functional analysis and its connections with quantum games. The main question we are interested in asks for the optimal amount of entanglement that a coalition of attackers have to share in order to compromise the security of any PBQC protocol. Known upper bounds for that quantity are exponential in the size of the quantum systems manipulated in the honest implementation of the protocol. However, known lower bounds are only linear. In order to deepen the understanding of this question, here we propose a position verification (PV) protocol and find lower bounds on the resources needed to break it. The main idea behind the proof of these bounds is the understanding of cheating strategies as vector valued assignments on the Boolean hypercube. Then, the bounds follow from the understanding of some geometric properties of particular Banach spaces, their type constants. Under some regularity assumptions on the former assignment, these bounds lead to exponential lower bounds on the quantum resources employed, clarifying the question in this restricted case. Known attacks indeed satisfy the assumption we make, although we do not know how universal this feature is. Furthermore, we show that the understanding of the type properties of some more involved Banach spaces would allow to drop out the assumptions and lead to unconditional lower bounds on the resources used to attack our protocol. Unfortunately, we were not able to estimate the relevant type constant. Despite that, we conjecture an upper bound for this quantity and show some evidence supporting it. A positive solution of the conjecture would lead to stronger security guarantees for the proposed PV protocol providing a better understanding of the question asked above. 
    more » « less
  4. The double oracle algorithm is a popular method of solving games, because it is able to reduce computing equilibria to computing a series of best responses. However, its theoretical properties are not well understood. In this paper, we provide exponential lower bounds on the performance of the double oracle algorithm in both partiallyobservable stochastic games (POSGs) and extensiveform games (EFGs). Our results depend on what is assumed about the tiebreaking scheme—that is, which meta-Nash equilibrium or best response is chosen, in the event that there are multiple to pick from. In particular, for EFGs, our lower bounds require adversarial tiebreaking, whereas for POSGs, our lower bounds apply regardless of how ties are broken. 
    more » « less
  5. The double oracle algorithm is a popular method of solving games, because it is able to reduce computing equilibria to computing a series of best responses. However, its theoretical properties are not well understood. In this paper, we provide exponential lower bounds on the performance of the double oracle algorithm in both partially-observable stochastic games (POSGs) and extensive-form games (EFGs). Our results depend on what is assumed about the tiebreaking scheme---that is, which meta-Nash equilibrium or best response is chosen, in the event that there are multiple to pick from. In particular, for EFGs, our lower bounds require adversarial tiebreaking, whereas for POSGs, our lower bounds apply regardless of how ties are broken. 
    more » « less