Elastic actuation can improve human-robot interaction and energy efficiency for wearable robots. Previous work showed that the energy consumption of series elastic actuators can be a convex function of the series spring compliance. This function is useful to optimally select the series spring compliance that reduces the motor energy consumption. However, series springs have limited influence on the motor torque, which is a major source of the energy losses due to the associated Joule heating. Springs in parallel to the motor can significantly modify the motor torque and therefore reduce Joule heating, but it is unknown how to design springs that globally minimize energy consumption for a given motion of the load. In this work, we introduce the stiffness design of linear and nonlinear parallel elastic actuators via convex optimization. We show that the energy consumption of parallel elastic actuators is a convex function of the spring stiffness and compare the energy savings with that of optimal series elastic actuators. We analyze robustness of the solution in simulation by adding uncertainty of 20% of the RMS load kinematics and kinetics for the ankle, knee, and hip movements for level-ground human walking. When the winding Joule heating losses are dominant with respect to the viscous losses, our optimal PEA designs outperform SEA designs by further reducing the motor energy consumption up to 63%. Comparing to the linear PEA designs, our nonlinear PEA designs further reduced the motor energy consumption up to 31%. From our convex formulation, our global optimal nonlinear parallel elastic actuator designs give two different elongation-torque curves for positive and negative elongation, suggesting a clutching mechanism for the final implementation. In addition, the different torque-elongation profiles for positive and negative elongation for nonlinear parallel elastic actuators can cause sensitivity of the energy consumption to changes in the nominal load trajectory. 
                        more » 
                        « less   
                    
                            
                            Robust Optimal Design of Energy Efficient Series Elastic Actuators: Application to a Powered Prosthetic Ankle
                        
                    
    
            Design of rehabilitation and physical assistance robots that work safely and efficiently despite uncertain operational conditions remains an important challenge. Current methods for the design of energy efficient series elastic actuators use an optimization formulation that typically assumes known operational requirements. This approach could lead to actuators that cannot satisfy elongation, speed, or torque requirements when the operation deviates from nominal conditions. Addressing this gap, we propose a convex optimization formulation to design the stiffness of series elastic actuators to minimize energy consumption and satisfy actuator constraints despite uncertainty due to manufacturing of the spring, unmodeled dynamics, efficiency of the transmission, and the kinematics and kinetics of the load. To achieve convexity, we write energy consumption as a scalar convex-quadratic function of compliance. As actuator constraints, we consider peak motor torque, peak motor velocity, limitations due to the speed-torque relationship of DC motors, and peak elongation of the spring. We apply our formulation to the robust design of a series elastic actuator for a powered prosthetic ankle. Our simulation results indicate that a small trade-off between energy efficiency and robustness is justified to design actuators that can operate with uncertainty. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1830360
- PAR ID:
- 10095856
- Date Published:
- Journal Name:
- IEEE International Conference on Rehabilitation Robotics
- Page Range / eLocation ID:
- 740 to 747
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Compared to rigid actuators, Series Elastic Actuators (SEAs) offer a potential reduction of motor energy consumption and peak power, though these benefits are highly dependent on the design of the torque-elongation profile of the elastic element. In the case of linear springs, natural dynamics is a traditional method for this design, but it has two major limitations: arbitrary load trajectories are difficult or impossible to analyze and it does not consider actuator constraints. Parametric optimization is also a popular design method that addresses these limitations, but solutions are only optimal within the space of the parameters. To overcome these limitations, we propose a non-parametric convex optimization program for the design of the nonlinear elastic element that minimizes energy consumption and peak power for an arbitrary periodic reference trajectory. To obtain convexity, we introduce a convex approximation to the expression of peak power; energy consumption is shown to be convex without approximation. The combination of peak power and energy consumption in the cost function leads to a multiobjective convex optimization framework that comprises the main contribution of this paper. As a case study, we recover the elongation-torque profile of a cubic spring, given its natural oscillation as the reference load. We then design nonlinear SEAs for an ankle prosthesis that minimize energy consumption and peak power for different trajectories and extend the range of achievable tasks when subject to actuator constraints.more » « less
- 
            Natural dynamics, nonlinear optimization, and, more recently, convex optimization are available methods for stiffness design of energy-efficient series elastic actuators. Natural dynamics and general nonlinear optimization only work for a limited set of load kinetics and kinematics, cannot guarantee convergence to a global optimum, or depend on initial conditions to the numerical solver. Convex programs alleviate these limitations and allow a global solution in polynomial time, which is useful when the space of optimization variables grows (e.g., when designing optimal nonlinear springs or co-designing spring, controller, and reference trajectories). Our previous work introduced the stiffness design of series elastic actuators via convex optimization when the transmission dynamics are negligible, which is an assumption that applies mostly in theory or when the actuator uses a direct or quasi-direct drive. In this work, we extend our analysis to include friction at the transmission. Coulomb friction at the transmission results in a non-convex expression for the energy dissipated as heat, but we illustrate a convex approximation for stiffness design. We experimentally validated our framework using a series elastic actuator with specifications similar to the knee joint of the Open Source Leg, an open-source robotic knee-ankle prosthesis.more » « less
- 
            Abstract Powered exoskeletons need actuators that are lightweight, compact, and efficient while allowing for accurate torque control. To satisfy these requirements, researchers have proposed using series elastic actuators (SEAs). SEAs use a spring in series with rotary or linear actuators. The spring compliance, in conjunction with an appropriate control scheme, improves torque control, efficiency, output impedance, and disturbance rejection. However, springs add weight to the actuator and complexity to the control, which may have negative effects on the performance of the powered exoskeleton. Therefore, there is an unmet need for new SEA designs that are lighter and more efficient than available systems, as well as for control strategies that push the performance of SEA-based exoskeletons without requiring complex modeling and tuning. This article presents the design, development, and testing of a novel SEA with high force density for powered exoskeletons, as well as the use of a two degree-of-freedom (2DOF) PID system to improve output impedance and disturbance rejection. Benchtop testing results show reduced output impedance and damping values when using a 2DOF PID controller as compared to a 1DOF PID controller. Human experiments with three able-bodied subjects (N = 3) show improved torque tracking with reduced root-mean-square error by 45.2% and reduced peak error by 49.8% when using a 2DOF PID controller. Furthermore, EMG data shows a reduction in peak EMG value when using the exoskeleton in assistive mode compared to the exoskeleton operating in transparent mode.more » « less
- 
            Ibaraki, S; Chen, X (Ed.)A spring in parallel with an effort source (e.g., electric motor or human muscle) can reduce its energy consumption and effort (i.e., torque or force) depending on the spring stiffness, spring preload, and actuation task. However, selecting the spring stiffness and preload that guarantees effort or energy reduction for an arbitrary set of tasks is a design challenge. This work formulates a convex optimization problem to guarantee that a parallel spring reduces the root-mean-square source effort or energy consumption for multiple tasks. Specifically, we guarantee the benefits across multiple tasks by enforcing a set of convex quadratic constraints in our optimization variables, the parallel spring stiffness and preload. These quadratic constraints are equivalent to ellipses in the stiffness and preload plane; any combination of stiffness and preload inside the ellipse represents a parallel spring that minimizes effort source or energy consumption with respect to an actuator without a spring. This geometric interpretation intuitively guides the stiffness and preload selection process. We analytically and experimentally prove the convex quadratic function of the spring stiffness and preload. As applications, we analyze the stiffness and preload selection of a parallel spring for a knee exoskeleton using human muscle as the effort source and a prosthetic ankle powered by electric motors. The source code associated with our framework is available as supplemental open-source software.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    