Osteosarcomas are immune-resistant and metastatic as a result of elevated nonsense-mediated RNA decay (NMD), reactive oxygen species (ROS), and epithelial-to-mesenchymal transition (EMT). Although vitamin D has anti-cancer effects, its effectiveness and mechanism of action against osteosarcomas are poorly understood. In this study, we assessed the impact of vitamin D and its receptor (VDR) on NMD-ROS-EMT signaling in in vitro and in vivo osteosarcoma animal models. Initiation of VDR signaling facilitated the enrichment of EMT pathway genes, after which 1,25(OH) 2 D, the active vitamin D derivative, inhibited the EMT pathway in osteosarcoma subtypes. The ligand-bound VDR directly downregulated the EMT inducer SNAI2 , differentiating highly metastatic from low metastatic subtypes and 1,25(OH) 2 D sensitivity. Moreover, epigenome-wide motif and putative target gene analysis revealed the VDR’s integration with NMD tumorigenic and immunogenic pathways. In an autoregulatory manner, 1,25(OH) 2 D inhibited NMD machinery genes and upregulated NMD target genes implicated in anti-oncogenic activity, immunorecognition, and cell-to-cell adhesion. Dicer substrate siRNA knockdown of SNAI2 revealed superoxide dismutase 2 (SOD2)-mediated antioxidative responses and 1,25(OH) 2 D sensitization via non-canonical SOD2 nuclear-to-mitochondrial translocalization leading to overall ROS suppression. In a mouse xenograft metastasis model, the therapeutically relevant vitamin D derivative calcipotriol inhibited osteosarcoma metastasis and tumor growth shown for the first time. Our results uncover novel osteosarcoma-inhibiting mechanisms for vitamin D and calcipotriol that may be translated to human patients.
more »
« less
A protecting group-free synthesis of (−)-hortonones A–C from the Inhoffen–Lythgoe diol
A synthesis of hortonones A–C has been accomplished from vitamin D 2 via the Inhoffen–Lythgoe diol without the use of protective groups. Key steps in the syntheses include a TMS-diazomethane mediated regioselective homologation of the cyclohexanone ring to a cycloheptanone moiety and a sodium naphthalenide-mediated allylic alcohol transposition. It has been found that the absolute configuration of the natural hortonones is opposite that of the synthetic material prepared from vitamin D 2 .
more »
« less
- Award ID(s):
- 1508070
- PAR ID:
- 10097202
- Date Published:
- Journal Name:
- Organic & Biomolecular Chemistry
- Volume:
- 14
- Issue:
- 37
- ISSN:
- 1477-0520
- Page Range / eLocation ID:
- 8728 to 8731
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A number of studies have examined the effects of 1,25‐dihydroxyvitamin D3(1,25(OH)2D3) on intestinal inflammation driven by immune cells, while little information is currently available about its impact on inflammation caused by intestinal epithelial cell (IEC) defects. Mice lacking IEC‐specificRab11aa recycling endosome small GTPase resulted in increased epithelial cell production of inflammatory cytokines, notably IL‐6 and early onset of enteritis. To determine whether vitamin D supplementation may benefit hosts with epithelial cell‐originated mucosal inflammation, we evaluated in vivo effects of injected 1,25(OH)2D3or dietary supplement of a high dose of vitamin D on the gut phenotypes of IEC‐specificRab11aknockout mice (Rab11aΔIEC). 1,25(OH)2D3administered at 25 ng, two doses per mouse, by intraperitoneal injection, reduced inflammatory cytokine production in knockout mice compared to vehicle‐injected mice. Remarkably, feeding mice with dietary vitamin D supplementation at 20,000 IU/kg spanning fetal and postnatal developmental stages led to improved bodyweights, reduced immune cell infiltration, and decreased inflammatory cytokines. We found that these vitamin D effects were accompanied by decreased NF‐κB (p65) in the knockout intestinal epithelia, reduced tissue‐resident macrophages, and partial restoration of epithelial morphology. Our study suggests that dietary vitamin D supplementation may prevent and limit intestinal inflammation in hosts with high susceptibility to chronic inflammation.more » « less
-
Imbalanced data, a common challenge encountered in statistical analyses of clinical trial datasets and disease modeling, refers to the scenario where one class significantly outnumbers the other in a binary classification problem. This imbalance can lead to biased model performance, favoring the majority class, and affecting the understanding of the relative importance of predictive variables. Despite its prevalence, the existing literature lacks comprehensive studies that elucidate methodologies to handle imbalanced data effectively. In this study, we discuss the binary logistic model and its limitations when dealing with imbalanced data, as model performance tends to be biased towards the majority class. We propose a novel approach to addressing imbalanced data and apply it to publicly available data from the VITAL trial, a large-scale clinical trial that examines the effects of vitamin D and Omega-3 fatty acid to investigate the relationship between vitamin D and cancer incidence in sub-populations based on race/ethnicity and demographic factors such as body mass index (BMI), age, and sex. Our results demonstrate a significant improvement in model performance after our undersampling method is applied to the data set with respect to cancer incidence prediction. Both epidemiological and laboratory studies have suggested that vitamin D may lower the occurrence and death rate of cancer, but inconsistent and conflicting findings have been reported due to the difficulty of conducting large-scale clinical trials. We also utilize logistic regression within each ethnic sub-population to determine the impact of demographic factors on cancer incidence, with a particular focus on the role of vitamin D. This study provides a framework for using classification models to understand relative variable importance when dealing with imbalanced data.more » « less
-
Abstract The evolution of skin pigmentation has been shaped by numerous biological and cultural shifts throughout human history. Vitamin D is considered a driver of depigmentation evolution in humans, given the deleterious health effects associated with vitamin D deficiency, which is often shaped by cultural factors. New advancements in genomics and epigenomics have opened the door to a deeper exploration of skin pigmentation evolution in both contemporary and ancient populations. Data from ancient Europeans has offered great context to the spread of depigmentation alleles via the evaluation of migration events and cultural shifts that occurred during the Neolithic. However, novel insights can further be gained via the inclusion of diverse ancient and contemporary populations. Here we present on how potential biases and limitations in skin pigmentation research can be overcome with the integration of interdisciplinary data that includes both cultural and biological elements, which have shaped the evolutionary history of skin pigmentation in humans.more » « less
-
Giovannoni, Stephen J (Ed.)ABSTRACT Vitamin B1 (thiamin) is a vital nutrient for most cells in nature, including marine plankton. Early and recent experiments show that B1 degradation products instead of B1 can support the growth of marine bacterioplankton and phytoplankton. However, the use and occurrence of some degradation products remains uninvestigated, namely N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine (FAMP), which has been a focus of plant oxidative stress research. We investigated the relevance of FAMP in the ocean. Experiments and global ocean meta-omic data indicate that eukaryotic phytoplankton, including picoeukaryotes and harmful algal bloom species, use FAMP while bacterioplankton appear more likely to use deformylated FAMP, 4-amino-5-aminomethyl-2-methylpyrimidine. Measurements of FAMP in seawater and biomass revealed that it occurs at picomolar concentrations in the surface ocean, heterotrophic bacterial cultures produce FAMP in the dark—indicating non-photodegradation of B1 by cells, and B1-requiring (auxotrophic) picoeukaryotic phytoplankton produce intracellular FAMP. Our results require an expansion of thinking about vitamin degradation in the sea, but also the marine B1 cycle where it is now crucial to consider a new B1-related compound pool (FAMP), as well as generation (dark degradation—likely via oxidation), turnover (plankton uptake), and exchange of the compound within the networks of plankton. IMPORTANCEResults of this collaborative study newly show that a vitamin B1 degradation product, N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine (FAMP), can be used by diverse marine microbes (bacteria and phytoplankton) to meet their vitamin B1 demands instead of B1 and that FAMP occurs in the surface ocean. FAMP has not yet been accounted for in the ocean and its use likely enables cells to avoid B1 growth deficiency. Additionally, we show FAMP is formed in and out of cells without solar irradiance—a commonly considered route of vitamin degradation in the sea and nature. Altogether, the results expand thinking about oceanic vitamin degradation, but also the marine B1 cycle where it is now crucial to consider a new B1-related compound pool (FAMP), as well as its generation (dark degradation—likely via oxidation), turnover (plankton uptake), and exchange within networks of plankton.more » « less
An official website of the United States government

