skip to main content


Title: Triangulated Mentorship of Engineering Students - Leveraging Peer Mentoring and Vertical Integration.
The benefits of mentorship are widely acknowledged in the literature, specifically for students from under-represented groups in technical fields of study. The authors propose a triangulation methodology for mentorship that can be adopted in engineering programmes by leveraging peer mentorship and vertical integration in a project-based learning environment. Results from a pilot programme are presented to comprehend the effectiveness of the proposed methodology. Results are evaluated quantitatively by evaluating student performance and student responses. Qualitative results are evaluated through data collected from student interviews. Results indicate that the mentorship programme outlined in this article has been highly beneficial to the cohort observed in this study. In addition to academic achievements, it is observed that students in the programme engaged in undergraduate research and actively participated in engineering student clubs since they understood the benefits of such participation for their future pursuits. Students in the pilot programme strongly acknowledge the benefits of triangulated mentorship.  more » « less
Award ID(s):
1355872
NSF-PAR ID:
10097711
Author(s) / Creator(s):
Date Published:
Journal Name:
Global journal of engineering education
Volume:
21
Issue:
1
ISSN:
1328-3154
Page Range / eLocation ID:
14-23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Improving the level of success of students from low socioeconomic backgrounds in science, technology, engineering, and mathematics (STEM) disciplines has been a prevailing concern for higher education institutions for many years. To address this challenge, a pilot initiative has been implemented with engineering students at the University of Puerto Rico Mayaguez, a recognized Hispanic-serving institution. Over the past four years, the Program for Engineering Access, Retention, and LIATS Success (PEARLS) has brought in an innovative intervention model that combines elements from socio-cognitive career theories and departure studies to impact students' success. PEARLS has established a comprehensive range of tools and services, including mentorship, professional readiness training, research opportunities, scholarships, and peer mentor activities. These efforts have led to impressive outcomes, including a significant increase in retention and persistence rates, increased graduation rates having quad-fold those observed in the general student population, and an impressive record of engagements in industry, research, and leadership experiences. This paper discusses the program structure and outcomes from five perspectives that include background experiences, the structure of provided services, the results of their execution, the elements of knowledge derived from its application, and the challenges experienced throughout its implementation. 
    more » « less
  2. null (Ed.)
    Purpose This study aims to examine how science, technology, engineering, and mathematics doctoral students interact with postdocs within the research laboratory, identifying the nature and potential impacts of student–postdoc mentoring relationships. Design/methodology/approach Using a sample of 53 doctoral students in the biological sciences, this study uses a sequential mixed-methods design. More specifically, a phenomenological approach enabled the authors to identify how doctoral students make meaning of their interactions with postdocs and other research staff. Descriptive statistics are used to examine how emergent themes might differ as a product of gender and race/ethnicity and the extent to which emergent themes may relate to key doctoral student socialization outcomes. Findings This study reveals six emergent themes, which primarily focus on how doctoral students receive instrumental and psychosocial support from postdocs in their labs. The most frequent emergent theme captures the unique ways in which postdocs provide ongoing, hands-on support and troubleshooting at the lab bench. When examining how this theme plays a role in socialization outcomes, the results suggest that doctoral students who described this type of support from postdocs had more positive mental health outcomes than those who did not describe this type of hands-on support. Originality/value Literature on graduate student mentorship has focused primarily on the impact of advisors, despite recent empirical evidence of a “cascading mentorship” model, in which senior students and staff also play a key mentoring role. This study provides new insights into the unique mentoring role of postdocs, focusing on the nature and potential impacts of student–postdoc interactions. 
    more » « less
  3. Abstract Background

    Engineering‐oriented bridge programs and camps are popular strategies for broadening participation. The students who often serve as counselors and mentors in these programs are integral to their success.

    Purpose

    Predicated on the belief that mentoring contributes to positive outcomes for the mentors themselves, we sought to understand how undergraduate student mentors approached and experienced their work with a 6‐day overnight, NSF‐sponsored youth engineering camp (YEC). This study was guided by the question: How did YEC camp counselors approach and experience their roles as mentors?

    Design/Methods

    We conducted an exploratory qualitative study of four Black undergraduate engineering students' experiences with and approaches to near‐peer mentorship in the YEC program. Data consisted of transcripts from two post‐program interviews and one written reflection from each participant. We analyzed data through abductive coding and the funds of knowledge framework.

    Results

    Through subsequent interpretation of code categories, we found YEC mentors: (1) engaged in altruistic motivations as YEC mentors, (2) leveraged previous experiences to guide their approaches to mentorship, and (3) engaged in self‐directed learning and development.

    Conclusions

    This study highlights the knowledge and strategies that YEC mentors drew upon in their roles, and how they sought and achieved various personal, academic, and professional benefits. Insights from this study illustrate how near‐peer mentors can support their and others' engineering aspirations.

     
    more » « less
  4. Makerspaces have observed and speculated benefits for the students who frequent them. For example, previous studies have found that students who are involved in their campus’s makerspace tend to be more confident and less anxious when conducting engineering design tasks while gaining hands-on experience with machinery not obtained in their coursework. Recognizing the potential benefits of academic makerspaces, we aimed to capture what influences students to become involved in these spaces through a mixed-method study. A quantitative longitudinal study of students in a mechanical engineering program collected data on design self-efficacy, makerspace involvement, and user demographics through surveys conducted on freshmen, sophomores, and seniors. In this paper, the student responses from three semesters of freshmen level design classes are evaluated for involvement and self-efficacy based on whether or not a 3D modeling project requires the use of makerspace equipment. The study finds that students required to use the makerspace for the project were significantly more likely to become involved in the makerspace. These results inspired us to integrate a qualitative approach to examine how student involvement and exposure to the space are related. Using an in-depth phenomenologically based interviewing method, purposive sampling, and snowball sampling, six females, who have all made the conscious decision to engage in a university makerspace(s), participated in a three-series interview process. The interviews were transcribed and analyzed via emerging questions for categorical metrics and infographics of the student exposure and involvement in making and makerspaces. These findings are used to demonstrate 1) how students who do, or do not, seek out making activities may end up in the makerspace and 2) how student narratives resulting in high-makerspace involvement are impacted by prior experiences, classes, and friendships. 
    more » « less
  5. Economically disadvantaged youth residing in mountain tourist communities represent an important and understudied rural population. These communities typically include a large percentage of children that are English language learners. Our NSF STEM Career Connections project, A Model for Preparing Economically-Disadvantaged Rural Youth for the Future STEM Workplace, investigates strategies that help middle school youth in these communities to envision a broader range of workforce opportunities, especially in STEM and computing careers. This poster highlights the initial findings of an innovative model that involves working with local schools and community partners to support the integration of local career contexts, engineering phenomena, 3D printing technologies, career connections, and mentorship into formal educational experiences to motivate and prepare rural youth for future STEM careers. We focus on select classrooms at two middle schools and describe the implementation of a novel 3D printing curriculum during the 2020-2021 school-year. Two STEM teachers implemented the five-week curriculum with approximately 300 students per quarter. To create a rich inquiry-driven learning environment, the curriculum uses an instructional design approach called storylining. This approach is intended to promote coherence, relevance, and meaning from the students’ perspectives by using students’ questions to drive investigations and lessons. Students worked towards answering the question: “How can we support animals with physical disabilities so they can perform daily activities independently?” Students engaged in the engineering design process by defining, developing, and optimizing solutions to develop and print prosthetic limbs for animals with disabilities using 3D modeling, a unique augmented reality application, and 3D printing. In order to embed connections to STEM careers and career pathways, some students received mentorship and guidance from local STEM professionals who work in related fields. This poster will describe the curriculum and its implementation across two quarters at two middle schools in the US rural mountain west, as well as the impact on students’ interest in STEM and computing careers. During the first quarter students engaged in the 3D printing curriculum, but did not have access to the STEM career and career pathway connections mentorship piece. During the second quarter, the project established a partnership with a local STEM business -- a medical research institute that utilizes 3D printing and scanning for creating human surgical devices and procedures -- to provide mentorship to the students. Volunteers from this institute served as ongoing mentors for the students in each classroom during the second quarter. The STEM mentors guided students through the process of designing, testing, and optimizing their 3D models and 3D printed prosthetics, providing insights into how students’ learning directly applies to the medical industry. Different forms of student data such as cognitive interviews and pre/post STEM interest and spatial thinking surveys were collected and analyzed to understand the benefits of the career connections mentorship component. Preliminary findings suggest the relationship between local STEM businesses and students is important to motivate youth from rural areas to see themselves being successful in STEM careers and helping them to realize the benefits of engaging with emerging engineering technologies. 
    more » « less