skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Multirate Approach for Fluid-Structure Interac- tion Computation with Decoupled Methods
We investigate a multirate time step approach applied to decoupled meth- ods in fluid and structure interaction (FSI) computation, where two different time steps are employed for fluid and structure respectively. For illustration, the multirate technique is examined by applying the decoupled β scheme. Numerical experiments show that the proposed approach is stable and retains the same order of accuracy as the original single time step scheme, while with much less computational expense.  more » « less
Award ID(s):
1831950 1700328
PAR ID:
10097721
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Communications in computational physics
ISSN:
1991-7120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We construct new first- and second-order pressure correctionschemes using the scalar auxiliary variable approach for the Navier-Stokes equations. These schemes are linear, decoupled and only require solving a sequence of Poisson type equations at each time step. Furthermore, they are unconditionally energy stable. We also establish rigorous error estimates in the two dimensional case for the velocity and pressure approximation of the first-order scheme without any condition on the time step. 
    more » « less
  2. In this paper, we consider the numerical approximation for a phase field model of the coupled two-phase free flow and two-phase porous media flow. This model consists of Cahn– Hilliard–Navier–Stokes equations in the free flow region and Cahn–Hilliard–Darcy equations in the porous media region that are coupled by seven interface conditions. The coupled system is decoupled based on the interface conditions and the solution values on the interface from the previous time step. A fully discretized scheme with finite elements for the spatial discretization is developed to solve the decoupled system. In order to deal with the difficulties arising from the interface conditions, the decoupled scheme needs to be constructed appropriately for the interface terms, and a modified discrete energy is introduced with an interface component. Furthermore, the scheme is linearized and energy stable. Hence, at each time step one need only solve a linear elliptic system for each of the two decoupled equations. Stability of the model and the proposed method is rigorously proved. Numerical experiments are presented to illustrate the features of the proposed numerical method and verify the theoretical conclusions. 
    more » « less
  3. This paper proposes a multirate output-feedback controller for multi-input multi-output (MIMO) systems, possibly with non-minimum-phase zeros, using the L1 adaptive control structure. The analysis of stability and robustness of the sampled-data controller reveals that under certain conditions the performance of a continuous-time reference system is uniformly recovered as the sampling time goes to zero. The controller is designed for detection and mitigation of actuator attacks. By considering a multirate formulation, stealthy zero-dynamics attacks become detectable. The experimental results from the flight test of a small quadrotor are provided. The tests show that the multirate L1 controller can effectively detect the zero-dynamics actuator attack and recover stability of the quadrotor. 
    more » « less
  4. In our previous work, we developed a multirate observer design method in linear systems with asynchronous sampling based on a Luenberger observer design coupled with inter‐sample predictors. In this article, the problem of multirate multidelay observer design is addressed where both asynchronous sampling and possible measurement delays are accounted for. The proposed observer adopts an available multirate observer design in the time interval between two consecutive delayed measurements. A dead time compensation approach is developed to compensate for the effect of delay and update past estimates when a delayed measurement arrives. The stability and robustness properties of the multirate observer will be preserved under nonconstant, arbitrarily large measurement delays. A mathematical example and a gas‐phase polyethylene reactor example demonstrate good performance of the proposed observer in the presence of nonuniform sampling and nonconstant measurement delays. © 2018 American Institute of Chemical EngineersAIChE J, 65: 562–570, 2019 
    more » « less
  5. Abstract This work focuses on the development of a novel, strongly-coupled, second-order partitioned method for fluid–poroelastic structure interaction. The flow is assumed to be viscous and incompressible, and the poroelastic material is described using the Biot model. To solve this problem, a numerical method is proposed, based on Robin interface conditions combined with the refactorization of the Cauchy’s one-legged ‘ϑ-like’ method. This approach allows the use of the mixed formulation for the Biot model. The proposed algorithm consists of solving a sequence of Backward Euler–Forward Euler steps. In the Backward Euler step, the fluid and poroelastic structure problems are solved iteratively until convergence. Then, the Forward Euler problems are solved using equivalent linear extrapolations. We prove that the iterative procedure in the Backward Euler step is convergent, and that the converged method is stable whenϑ∈ [1/2, 1]. Numerical examples are used to explore convergence rates with varying parameters used in our scheme, and to compare our method to a monolithic method based on Nitsche’s coupling approach. 
    more » « less