skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Collaboration Scripts Should Focus on Shared Models, Not on Drawings, to Help Students Translate Between Representations
Students often struggle to translate between physical and virtual models when learning concepts in STEM courses. Collaborative activities may help students overcome these difficulties, especially if collaboration scripts prompt students to discuss shared representations. Which representation should collaboration scripts focus students’ interactions on? We investigate this question in a quasi-experiment with 560 undergraduate chemistry students. All students collaboratively built physical ball-and-stick models of molecules and translated them into wedge-dash drawings. Two experimental conditions received a collaboration script. For the model condition, the script prompted students to focus on the physical ball-and-stick models. For the draw condition, the script prompted students to generate intermediary drawings on paper. Compared to a control condition with unscripted collaboration, the model condition showed higher learning gains and the draw condition showed lower learning gains—especially for students with low spatial skills. Our results yield theoretical and practical implications for collaborative practices with multiple representations  more » « less
Award ID(s):
1651781
PAR ID:
10097819
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ethinking Learning in the Digital Age. Making the Learning Sciences Count (ICLS) 2018
Page Range / eLocation ID:
504-511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Instructors in STEM classrooms often frame students' interactions with technologies to help them learn content. For instance, in many STEM domains, instructors commonly help students translate physical 3D models into 2D drawings by prompting them to focus on (a) orienting physical 3D models and (b) generating 2D drawings. We investigate whether framing prompts that target either of these practices enhance the effectiveness of an educational technology that supports collaborative translation among multiple representations. To this end, we conducted a quasi-experiment with 565 undergraduate chemistry students. All students collaboratively built physical 3D models of molecules and translated them into 2D drawings. In a business-as-usual control condition, students drew on paper, without support from an educational technology. In two experimental conditions, students drew in an educational technology that provided feedback and prompted collaboration. One condition received framing prompts to focus on physical models (model condition); another received prompts to generate intermediary drawings on paper (draw condition). Compared to the control condition, the model condition showed higher learning gains, but the draw condition showed lower learning gains. Analyses of log data showed that students made more model-based errors, and the prompts in the model condition reduced these model-based errors. However, interviews with instructors showed that they prefer drawing-focused prompts, in contrast to our results. These findings offer theoretical insights into how students learn to translate among representations. Furthermore, they yield practical recommendations for the use of educational technologies that support learning with multiple representations. 
    more » « less
  2. null (Ed.)
    Transactivity is a valued collaborative process, which has been associated with elevated learning gains, collaborative product quality, and knowledge transfer within teams. Dynamic forms of collaboration support have made use of real time monitoring of transactivity, and automation of its analysis has been affirmed as valuable to the field. Early models were able to achieve high reliability within restricted domains. More recent approaches have achieved a level of generality across learning domains. In this study, we investigate generalizability of models developed primarily in computer science courses to a new student population, namely, masters students in a leadership course, where we observe strikingly different patterns of transactive exchange than in prior studies. This difference prompted both a reformulation of the coding standards and innovation in the modeling approach, both of which we report on here. 
    more » « less
  3. Sharing ideas can strengthen students’ science explanations. Yet, how to guide uses of peers’ ideas, and what the impacts of those ideas are on students’ learning, are open questions. We implemented a web-based cell biology unit with 116 grade 7 students, and explored how peers’ ideas are used during explanation building, and how prompts to draw on peers to either diversify or reinforce existing ideas impacted the quality of students’ written explanations. Among other findings, exchanging ideas with peers led to all students improving their explanation quality upon revision; and students prompted to diversify their ideas showed greater learning gains by the end of the unit, while students prompted to reinforce ideas, who used more peer-generated ideas in preparation to write their explanations, produced higher quality explanations. This study builds our understanding of the influence of peer ideas on learning, and offers insight into supporting students in engaging effectively with peers’ ideas. 
    more » « less
  4. Abstract As future decision-makers, students must develop interdisciplinary, systems thinking skills to make effective management decisions; however, systems thinking remains challenging for many students. Here, we use the Food-Energy-Water (FEW) Nexus as a framework to examine how drawings can help students cultivate systems thinking skills. Drawings can be tools to make implicit mental models of systems connections explicit for instructors to better comprehend student learning. Our goal was to understand how drawing can help students make connections across systems compared to using only verbal explanations. In 2021, we interviewed undergraduates, asking them to draw and verbally explain the FEW Nexus. Analysis revealed that student drawings showed an increase in the number of connections that half of students could describe when compared to verbal-only explanations. Instructors may benefit from this study by recognizing areas where students might struggle to understand FEW Nexus connections, where additional course emphasis is needed, and how drawings can help assess student learning. 
    more » « less
  5. Education in organic chemistry is highly reliant on molecular representations. Students abstract information from representations to make sense of submicroscopic interactions. This study investigates relationships between differing representations: bond-line structures, ball-and-stick, or electrostatic potential maps (EPMs), and predicting partial charges, nucleophiles, and electrophiles. The study makes use of students’ answers in hot-spot question format, where they select partially charged atoms on the image of a molecule and explanations. Analysis showed no significant difference among students when predicting a partially positive atom with each representation; however, more students with EPMs were able to correctly predict the partially negative atom. No difference was observed across representations in students predicting electrophilic character; while representations did influence students identifying nucleophilic character. The affordance of EPMs was that they cued more students to cite relative electronegativity indicating that such students were able to recognize the cause for electron rich/poor areas. This recognition is central to rationalizing mechanisms in organic chemistry. This study offers implications on incorporating EPMs during instruction and provides evidence-based support in how EPMs could be useful in promoting learning on topics that relate to an uneven charge distribution. 
    more » « less