skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Telegraphic switching signals by magnet tunnel junctions for neural spiking signals with high information capacity
Award ID(s):
1739635
PAR ID:
10097936
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
124
Issue:
15
ISSN:
0021-8979
Page Range / eLocation ID:
152121
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Previous work has identified characteristic neural signatures of value-based decision-making, including neural dynamics that closely resemble the ramping evidence accumulation process believed to underpin choice. Here we test whether these signatures of the choice process can be temporally dissociated from additional, choice-‘independent’ value signals. Indeed, EEG activity during value-based choice revealed distinct spatiotemporal clusters, with a stimulus-locked cluster reflecting affective reactions to choice sets and a response-locked cluster reflecting choice difficulty. Surprisingly, ‘neither’ of these clusters met the criteria for an evidence accumulation signal. Instead, we found that stimulus-locked activity can ‘mimic’ an evidence accumulation process when aligned to the response. Re-analysing four previous studies, including three perceptual decision-making studies, we show that response-locked signatures of evidence accumulation disappear when stimulus-locked and response-locked activity are modelled jointly. Collectively, our findings show that neural signatures of value can reflect choice-independent processes and look deceptively like evidence accumulation. 
    more » « less
  2. Abstract Head movement relative to the stationary environment gives rise to congruent vestibular and visual optic-flow signals. The resulting perception of a stationary visual environment, referred to herein as stationarity perception, depends on mechanisms that compare visual and vestibular signals to evaluate their congruence. Here we investigate the functioning of these mechanisms and their dependence on fixation behavior as well as on the activeversuspassive nature of the head movement. Stationarity perception was measured by modifying the gain on visual motion relative to head movement on individual trials and asking subjects to report whether the gain was too low or too high. Fitting a psychometric function to the data yields two key parameters of performance. The mean is a measure of accuracy, and the standard deviation is a measure of precision. Experiments were conducted using a head-mounted display with fixation behavior monitored by an embedded eye tracker. During active conditions, subjects rotated their heads in yaw ∼15 deg/s over ∼1 s. Each subject’s movements were recorded and played backviarotating chair during the passive condition. During head-fixed and scene-fixed fixation the fixation target moved with the head or scene, respectively. Both precision and accuracy were better during active than passive head movement, likely due to increased precision on the head movement estimate arising from motor prediction and neck proprioception. Performance was also better during scene-fixed than head-fixed fixation, perhaps due to decreased velocity of retinal image motion and increased precision on the retinal image motion estimate. These results reveal how the nature of head and eye movements mediate encoding, processing, and comparison of relevant sensory and motor signals. 
    more » « less
  3. Abstract Pulsed EPR experiments have proven to be an important tool for measuring EPR spectra, kinetics and relaxation rates of free radicals and triplet molecules. The EPR frequencies and selection rules from CW-EPR spectra also govern pulsed EPR-experiments, but pulsed excitation provides much greater control over spin dynamics and allows clean separation and measurement of many properties of the spin system. Most pulsed EPR measurements of triplet molecules have been made in the selective pulse limit where only one EPR transition of a molecule is excited by microwave pulses and its EPR spectroscopy behaves like that of a radical with spin of 
    more » « less