skip to main content


Title: Cross-Layer Control Adaptation for Autonomous System Resilience
The last decade has seen tremendous advances in the transformation of ubiquitous control, computing and communication platforms that are anytime, anywhere. These platforms allow humans to interact with machines through sensing, control and actuation functions in ways not imaginable a few decades ago. While robust control techniques aim to maintain autonomous system performance in the presence of bounded modeling errors, they are not designed to manage large multiparameter variations and internal component failures that are inevitable during lengthy periods of field deployment. To address the trustworthiness of autonomous systems in the field, we propose a cross-layer error resilience approach in which errors are detected and corrected at appropriate levels of the design (hardware-through software) with the objective of minimizing the latency of error recovery while maintaining high failure coverage. At the control processor level, soft errors in the digital control processor are considered. At the system level, sensor and actuator failures are analyzed. These impairments define the health of the system. A methodology for adapting the control procedure of the autonomous system to compensate for degraded system health is proposed. It is shown how this methodology can be applied to simple linear and nonlinear control systems to maintain system performance in the presence of internal component failures. Experimental results demonstrate the feasibility of the proposed methodology.  more » « less
Award ID(s):
1723997
NSF-PAR ID:
10098275
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International On-Line Testing Symposium
Page Range / eLocation ID:
261 to 264
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose an autonomous quantum error correction scheme using squeezed cat (SC) code against excitation loss in continuous-variable systems. Through reservoir engineering, we show that a structured dissipation can stabilize a two-component SC while autonomously correcting the errors. The implementation of such dissipation only requires low-order nonlinear couplings among three bosonic modes or between a bosonic mode and a qutrit. While our proposed scheme is device independent, it is readily implementable with current experimental platforms such as superconducting circuits and trapped-ion systems. Compared to the stabilized cat, the stabilized SC has a much lower dominant error rate and a significantly enhanced noise bias. Furthermore, the bias-preserving operations for the SC have much lower error rates. In combination, the stabilized SC leads to substantially better logical performance when concatenating with an outer discrete-variable code. The surface-SC scheme achieves more than one order of magnitude increase in the threshold ratio between the loss rate κ1 and the engineered dissipation rate κ2. Under a practical noise ratio κ1/κ2 = 10−3, the repetition-SC scheme can reach a 10−15 logical error rate even with a small mean excitation number of 4, which already suffices for practically useful quantum algorithms. 
    more » « less
  2. Time has become an essential aspect of many computing systems where temporal correctness is as important as functional correctness. Autonomous vehicles, Industry 4.0, and smart grids are a few examples of time-sensitive systems. As time-sensitive applications become large, complex, and distributed, traditional methods fall short of achieving the desired orchestration among components. In this vision article, we first propose a standard to maintain an accurate notion of time among all components of the system, i.e., sensors, computing platforms, and actuators. Then, we propose explicit-time state estimation and closed-loop control algorithms that can tolerate large delays while achieving reasonable performance, and an integrated fail-safe mechanism that achieves a high level of robustness when timing failures happen. 
    more » « less
  3. The successful deployment of autonomous real-time systems is contingent on their ability to recover from performance degradation of sensors, actuators, and other electro-mechanical subsystems with low latency. In this article, we introduce ALERA, a novel framework for real-time control law adaptation in nonlinear control systems assisted by system state encodings that generate an error signal when the code properties are violated in the presence of failures. The fundamental contributions of this methodology are twofold—first, we show that the time-domain error signal contains perturbed system parameters’ diagnostic information that can be used for quick control law adaptation to failure conditions and second, this quick adaptation is performed via reinforcement learning algorithms that relearn the control law of the perturbed system from a starting condition dictated by the diagnostic information, thus achieving significantly faster recovery. The fast (up to 80X faster than traditional reinforcement learning paradigms) performance recovery enabled by ALERA is demonstrated on an inverted pendulum balancing problem, a brake-by-wire system, and a self-balancing robot. 
    more » « less
  4. Energy-harvesting designs typically include highly entangled app-lication-level and energy-management subsystems that span both hardware and software. This tight integration makes developing sophisticated energy-harvesting systems challenging, as developers have to consider both embedded system development and intermit-tent energy management simultaneously. Even when successful, solutions are often monolithic, produce suboptimal performance, and require substantial effort to translate to a new design. Instead, we propose a new energy-harvesting power management architecture, Altair that offloads all energy-management operations to the power supply itself while making the power supply programmable. Altair introduces an energy supervisor and a standard interface to enable an abstraction layer between the power supply hardware and the running application, making both replaceable and recon-figurable. To ensure minimal resource conflict on the application processor, while running resource-hungry optimization techniques in the supervisor, we implement the Altair design in a lower power microcontroller that runs in parallel with the application. We also develop a programmable power supply module and a software library for seamless application development with Altair. We evaluate the versatility of the proposed architecture across a spectrum of IoT devices and demonstrate the generality of the plat-form. We also design and implement an online energy-management technique using reinforcement learning on top of the platform and compare the performance against fixed duty-cycle baselines. Results indicate that sensors running the online energy-manager perform similar to continuously powered sensors, have a l0x higher event generation rate than the intermittently powered ones, 1.8-7x higher event detection accuracy, experience 50% fewer power failures, and are 44% more available than the sensors that maintain a constant duty-cycle. 
    more » « less
  5. null (Ed.)
    Safety is a critical component in today's autonomous and robotic systems. Many modern controllers endowed with notions of guaranteed safety properties rely on accurate mathematical models of these nonlinear dynamical systems. However, model uncertainty is always a persistent challenge weakening theoretical guarantees and compromising safety. For safety-critical systems, this is an even bigger challenge. Typically, safety is ensured by constraining the system states within a safe constraint set defined a priori by relying on the model of the system. A popular approach is to use Control Barrier Functions (CBFs) that encode safety using a smooth function. However, CBFs fail in the presence of model uncertainties. Moreover, an inaccurate model can either lead to incorrect notions of safety or worse, incur system critical failures. Addressing these drawbacks, we present a novel safety formulation that leverages properties of CBFs and positive definite kernels to design Gaussian CBFs. The underlying kernels are updated online by learning the unmodeled dynamics using Gaussian Processes (GPs). While CBFs guarantee forward invariance, the hyperparameters estimated using GPs update the kernel online and thereby adjust the relative notion of safety. We demonstrate our proposed technique on a safety-critical quadrotor on SO(3) in the presence of model uncertainty in simulation. With the kernel update performed online, safety is preserved for the system. 
    more » « less