- PAR ID:
- 10098328
- Date Published:
- Journal Name:
- IEEE Transactions on Knowledge and Data Engineering
- ISSN:
- 1041-4347
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Cycling as a green transportation mode has been promoted by many governments all over the world. As a result, constructing effective bike lanes has become a crucial task for governments promoting the cycling life style, as well-planned bike paths can reduce traffic congestion and decrease safety risks for both cyclists and motor vehicle drivers. Unfortunately, existing trajectory mining approaches for bike lane planning do not consider key realistic government constraints: 1) budget limitations, 2) construction convenience, and 3) bike lane utilization. In this paper, we propose a data-driven approach to develop bike lane construction plans based on large-scale real world bike trajectory data. We enforce these constraints to formulate our problem and introduce a flexible objective function to tune the benefit between coverage of the number of users and the length of their trajectories. We prove the NP-hardness of the problem and propose greedy-based heuristics to address it. Finally, we deploy our system on Microsoft Azure, providing extensive experiments and case studies to demonstrate the effectiveness of our approach.more » « less
-
Sampling-based motion planning (SBMP) is a major trajectory planning approach in autonomous driving given its high efficiency in practice. As the core of SBMP schemes, sampling strategy holds the key to whether a smooth and collision-free trajectory can be found in real-time. Although some bias sampling strategies have been explored in the literature to accelerate SBMP, the trajectory generated under existing bias sampling strategies may lead to sharp lane changing. To address this issue, we propose a new learning framework for SBMP. Specifically, we develop a novel automatic labeling scheme and a 2-Stage prediction model to improve the accuracy in predicting the intention of surrounding vehicles. We then develop an imitation learning scheme to generate sample points based on the experience of human drivers. Using the prediction results, we design a new bias sampling strategy to accelerate the SBMP algorithm by strategically selecting necessary sample points that can generate a smooth and collision-free trajectory and avoid sharp lane changing. Data-driven experiments show that the proposed sampling strategy outperforms existing sampling strategies, in terms of the computing time, traveling time, and smoothness of the trajectory. The results also show that our scheme is even better than human drivers.more » « less
-
Connected and automated vehicles (CAVs) extend urban traffic control from temporal to spatiotemporal by enabling the control of CAV trajectories. Most of the existing studies on CAV trajectory planning only consider longitudinal behaviors (i.e., in-lane driving), or assume that the lane changing can be done instantaneously. The resultant CAV trajectories are not realistic and cannot be executed at the vehicle level. The aim of this paper is to propose a full trajectory planning model that considers both in-lane driving and lane changing maneuvers. The trajectory generation problem is modeled as an optimization problem and the cost function considers multiple driving features including safety, efficiency, and comfort. Ten features are selected in the cost function to capture both in-lane driving and lane changing behaviors. One major challenge in generating a trajectory that reflects certain driving policies is to balance the weights of different features in the cost function. To address this challenge, it is proposed to optimize the weights of the cost function by imitation learning. Maximum entropy inverse reinforcement learning is applied to obtain the optimal weight for each feature and then CAV trajectories are generated with the learned weights. Experiments using the Next Generation Simulation (NGSIM) dataset show that the generated trajectory is very close to the original trajectory with regard to the Euclidean distance displacement, with a mean average error of less than 1 m. Meanwhile, the generated trajectories can maintain safety gaps with surrounding vehicles and have comparable fuel consumption.
-
null (Ed.)High-resolution vehicle trajectory data can be used to generate a wide range of performance measures and facilitate many smart mobility applications for traffic operations and management. In this paper, a Longitudinal Scanline LiDAR-Camera model is explored for trajectory extraction at urban arterial intersections. The proposed model can efficiently detect vehicle trajectories under the complex, noisy conditions (e.g., hanging cables, lane markings, crossing traffic) typical of an arterial intersection environment. Traces within video footage are then converted into trajectories in world coordinates by matching a video image with a 3D LiDAR (Light Detection and Ranging) model through key infrastructure points. Using 3D LiDAR data will significantly improve the camera calibration process for real-world trajectory extraction. The pan-tilt-zoom effects of the traffic camera can be handled automatically by a proposed motion estimation algorithm. The results demonstrate the potential of integrating longitudinal-scanline-based vehicle trajectory detection and the 3D LiDAR point cloud to provide lane-by-lane high-resolution trajectory data. The resulting system has the potential to become a low-cost but reliable measure for future smart mobility systems.more » « less
-
null (Ed.)Bike sharing systems have been in place for several years in many urban areas as alternative and sustainable means of transportation. Bicycle usage heavily depends on the available infrastructure (e.g., protected bike lanes), but other—mutable or immutable—environmental characteristics of a city can influence the adoption of the system from its dwellers. Hence, it is important to understand how these factors influence people’s decisions of whether to use a bike system or not. In this this paper, we first investigate how altitude variation influences the usage of the bike sharing system in Pittsburgh. Using trip data from the system, and controlling fora number of other potential confounding factors, we formulate the problem as a classification problem, develop a framework to enable prediction using Poisson regression, and find that there is a negative correlation between the altitude difference and the number of trips between two stations (fewer trips between stations with larger altitude difference). We further, discuss how the results of our analysis can be used to inform decision making during the design and operation of bike sharing systems.more » « less