The dynamics of triplet and singlet exciton populations in organic semiconductors offer interesting possibilities in improving optical device efficiency, while also attracting interest for future applications as manipulable states for quantum-state based computing. For technological applications, transduction of the exciton state is essential, thus detailed information on how the exciton dynamics affect device outputs is required. In this study, we measure the magnetic field response of the photocurrent in organic transistors to investigate the electrical signal resulting from singlet–triplet exciton dynamics. We find that controlling the orientation of the magnetic dipole orientation of the triplet by varying both the magnitude and orientation of the magnetic field with respect to single crystal axes in anti -2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene ( a diF TES ADT) allows us to manipulate the amount of current detected as a result of singlet fission.
more »
« less
Optical probes of the quantum-entangled triplet-triplet state in a heteroacene dimer
The nature and extent of the spin-entanglement in the triplet-triplet biexciton with total spin zero in correlated-electron π-conjugated systems continues to be an enigma. Differences in the ultrafast transient absorption spectra of free triplets versus the triplet-triplet can give a measure of the entanglement. This, however, requires theoretical understandings of transient absorptions from the optical spin-singlet, the lowest spin-triplet exciton, as well as from the triplet-triplet state, whose spectra are often overlapping and hence difficult to distinguish. We present a many-electron theory of the electronic structure of the triplet-triplet, and of complete wavelength-dependent excited state absorptions (ESAs) from all three states in a heteroacene dimer of interest in the field of intramolecular singlet fission. The theory allows direct comparisons of ESAs with existing experiments as well as experimental predictions, and gives physical understandings of transient absorptions within a pictorial exciton basis that can be carried over to other experimental systems.
more »
« less
- Award ID(s):
- 1764152
- PAR ID:
- 10098344
- Date Published:
- Journal Name:
- Physical review. B, Condensed matter
- Volume:
- 98
- Issue:
- 16
- ISSN:
- 1095-3795
- Page Range / eLocation ID:
- 165202
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nitrenium ions are important reactive intermediates in both chemistry and biology. Although singlet nitrenium ions are well-characterized by direct methods, the triplet states of nitrenium ions have never been directly detected. Here, we find that the excited state of the photoprecursor partitions between heterolysis to generate the singlet nitrenium ion and intersystem crossing (ISC) followed by a spontaneous heterolysis process to generate the tripletp-iodophenylnitrenium ion (np). The triplet nitrenium ion undergoes ISC to generate the ground singlet state, which ultimately undergoes proton and electron transfer to generate a long-lived radical cation that further generates the reduced p-iodoaniline. Ab Initio calculations were performed to map out the potential energy surfaces to better understand the excited state reactivity channels show that an energetically-accessible singlet-triplet crossing lies along theN-Nstretch coordinate and that the excited triplet state is unbound and spontaneously eliminates ammonia to generate the triplet nitrenium ion. These results give a clearer picture of the photophysical properties and reactivity of two different spin states of a phenylnitrenium ion and provide the first direct glimpse of a triplet nitrenium ion.more » « less
-
Abstract Singlet fission, a process that splits a singlet exciton into a biexciton, has promise in quantum information. We report time-resolved electron paramagnetic resonance measurements on a conformationally well-defined acene dimer molecule, TIPS-BP1', designed to exhibit strongly state-selective relaxation to specific magnetic spin sublevels. The resulting optically pumped spin polarization is a nearly pure initial state from the ensemble. The long-lived spin coherences modulate the signal intrinsically, allowing a measurement scheme that substantially removes noise and uncertainty in the magnetic resonance spectra. A nonadiabatic transition theory with a minimal number of spectroscopic parameters allows the quantitative assignment and interpretation of the spectra. In this work, we show that the rigid dimer TIPS-BP1' supports persistent spin coherences at temperatures far higher than those used in conventional superconducting quantum hardware.more » « less
-
null (Ed.)A novel pyranine derivative, Et HPTA-OH, was synthesized via the substitution of the anionic sulfonate groups with neutral diethylsulfonamide groups. The photophysical and photochemical properties of Et HPTA-OH were studied using photoluminescence quenching and transient absorption spectroscopy. The singlet state of Et HPTA-OH was found to be highly photoacidic (p K a * = 8.74 in acetonitrile). A series of aniline and pyridine bases were used to investigate excited-state proton transfer (ESPT) from singlet Et HPTA-OH, and rate constants for singlet quenching via ESPT were determined ( k q = 5.18 × 10 9 to 1.05 × 10 10 M −1 s −1 ). Et HPTA-OH was also found to exhibit a long-lived triplet state which reacts through a triplet–triplet annihilation (TTA) process to reform singlet Et HPTA-OH on timescales of up to 80 μs. Detection of ESPT photoproducts on timescales comparable to that of TTA singlet regeneration provides strong evidence for photoacidic behavior stemming from the regenerated singlet Et HPTA-OH.more » « less
-
It is demonstrated that a double hybrid density functional approximation, ωB88PTPSS, that incorporates equipartition of density functional theory and the non-local correlation, however with a meta-generalized gradient approximation correlation functional, as well as with the range-separated exchange of ωB2PLYP, provides accurate excitation energies for conventional systems, as well as correct prescription of negative singlet–triplet gaps for non-conventional systems with inverted gaps, without any necessity for parametric scaling of the same-spin and opposite-spin non-local correlation energies. Examined over “safe” excitations of the QUESTDB set, ωB88PTPSS performs quite well for open-shell systems, correctly and fairly accurately [relative to equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) reference] predicts negative gaps for 50 systems with inverted singlet–triplet gaps, and is one of the leading performers for intramolecular charge-transfer excitations and achieves near-second-order approximate coupled cluster (CC2) and second-order algebraic diagrammatic construction quality for the Q1 and Q2 subsets. Subsequently, we tested ωB88PTPSS on two sets of real-life examples from recent computational chemistry literature–the low energy bands of chlorophyll a (Chl a) and a set of thermally activated delayed fluorescence (TADF) systems. For Chl a, ωB88PTPSS qualitatively and quantitatively achieves DLPNO-STEOM-CCSD-level performance and provides excellent agreement with experiment. For TADF systems, ωB88PTPSS agrees quite well with spin-component-scaled CC2 (SCS-CC2) excitation energies, as well as experimental values, for the gaps between the S1 and T1 excited states.more » « less
An official website of the United States government

