skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing a suite of measurements to understand the critical zone
Abstract. Many scientists have begun to refer to the earth surface environment from the upper canopy to the depths of bedrock as the critical zone (CZ). Identification of the CZ as an integral object worthy of study implicitly posits that the study of the whole earth surface will provide benefits that do not arise when studying the individual parts. To study the CZ, however, requires prioritizing among the measurements that can be made – and we do not generally agree on the priorities. Currently, the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) is expanding from a small original focus area (0.08km2, Shale Hills catchment), to a larger watershed (164km2, Shavers Creek watershed) and is grappling with the prioritization. This effort is an expansion from a monolithologic first-order forested catchment to a watershed that encompasses several lithologies (shale, sandstone, limestone) and land use types (forest, agriculture). The goal of the project remains the same: to understand water, energy, gas, solute, and sediment (WEGSS) fluxes that are occurring today in the context of the record of those fluxes over geologic time as recorded in soil profiles, the sedimentary record, and landscape morphology. Given the small size of the Shale Hills catchment, the original design incorporated measurement of as many parameters as possible at high temporal and spatial density. In the larger Shavers Creek watershed, however, we must focus the measurements. We describe a strategy of data collection and modeling based on a geomorphological and land use framework that builds on the hillslope as the basic unit. Interpolation and extrapolation beyond specific sites relies on geophysical surveying, remote sensing, geomorphic analysis, the study of natural integrators such as streams, groundwaters or air, and application of a suite of CZ models. We hypothesize that measurements of a few important variables at strategic locations within a geomorphological framework will allow development of predictive models of CZ behavior. In turn, the measurements and models will reveal how the larger watershed will respond to perturbations both now and into the future.  more » « less
Award ID(s):
0725019 1239285 1331726
PAR ID:
10098607
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Earth Surface Dynamics
Volume:
4
Issue:
1
ISSN:
2196-632X
Page Range / eLocation ID:
211 to 235
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Trees, the most successful biological power plants on earth, build and plumb the critical zone (CZ) in ways that we do not yet understand. To encourage exploration of the character and implications of interactions between trees and soil in the CZ, we propose nine hypotheses that can be tested at diverse settings. The hypotheses are roughly divided into those about the architecture (building) and those about the water (plumbing) in the CZ, but the two functions are intertwined. Depending upon one's disciplinary background, many of the nine hypotheses listed below may appear obviously true or obviously false. (1) Tree roots can only physically penetrate and biogeochemically comminute the immobile substrate underlying mobile soil where that underlying substrate is fractured or pre-weathered. (2) In settings where the thickness of weathered material, H, is large, trees primarily shape the CZ through biogeochemical reactions within the rooting zone. (3) In forested uplands, the thickness of mobile soil, h, can evolve toward a steady state because of feedbacks related to root disruption and tree throw. (4) In settings where hH and the rates of uplift and erosion are low, the uptake of phosphorus into trees is buffered by the fine-grained fraction of the soil, and the ultimate source of this phosphorus is dust. (5) In settings of limited water availability, trees maintain the highest length density of functional roots at depths where water can be extracted over most of the growing season with the least amount of energy expenditure. (6) Trees grow the majority of their roots in the zone where the most growth-limiting resource is abundant, but they also grow roots at other depths to forage for other resources and to hydraulically redistribute those resources to depths where they can be taken up more efficiently. (7) Trees rely on matrix water in the unsaturated zone that at times may have an isotopic composition distinct from the gravity-drained water that transits from the hillslope to groundwater and streamflow. (8) Mycorrhizal fungi can use matrix water directly, but trees can only use this water by accessing it indirectly through the fungi. (9) Even trees growing well above the valley floor of a catchment can directly affect stream chemistry where changes in permeability near the rooting zone promote intermittent zones of water saturation and downslope flow of water to the stream. By testing these nine hypotheses, we will generate important new cross-disciplinary insights that advance CZ science. 
    more » « less
  2. Abstract Projections of future conditions within the critical zone—earthcasts—can be used to understand the potential effects of changes in climate on processes affecting landscapes. We are developing an approach to earthcast how weathering will change in the future using scenarios of climate change. As a first step here, we use the earthcasting approach to model aspect‐related effects on soil water chemistry and weathering on hillsides in a well‐studied east‐west trending watershed (Shale Hills, Pennsylvania, USA). We completed model simulations of solute chemistry in soil water with and without the effect of aspect for comparison to catchment observations. With aspect included, aqueous weathering fluxes were higher on the sunny side of the catchment. But the effect of aspect on temperature (0.8 °C warmer soil on sunny side) and recharge (100 mm/year larger on shaded side) alone did not explain the magnitude of the observed higher weathering fluxes on the sunny side. Modeled aspect‐related differences in weathering fluxes only approach field observations when we incorporated the measured differences in clay content observed in augered soils on the two hillslopes. We also had to include a biolifting module to accurately describe cation concentrations in soil water versus depth. Biolifting lowered some mineral dissolution rates while accelerating kaolinite precipitation. These short‐duration simulations also highlighted that the inherited differences in particle size on the two sides of the catchment might in themselves be explained by weathering under different microclimates caused by aspect—over longer durations than simulated with our models. 
    more » « less
  3. The belowground architecture of the critical zone (CZ) consists of soil and rock in various stages of weathering and wetness that acts as a medium for biological growth, mediates chemical reactions, and controls partitioning of hydrologic fluxes. Hydrogeophysical imaging provides unique insights into the geometries and properties of earth materials that are present in the CZ and beyond the reach of direct observation beside sparse wellbores. An improved understanding of CZ architecture can be achieved by leveraging the geophysical measurements of the subsurface. Creating categorical models of the CZ is valuable for driving hydrologic models and comparing belowground architectures between different sites to interpret weathering processes. The CZ architecture is revealed through a novel comparison of hillslopes by applying facies classification in the elastic-electric domain driven by surface-based hydrogeophysical measurements. Three pairs of hillslopes grouped according to common geologic substrates — granite, volcanic extrusive, and glacially altered — are classified by five different hydrofacies classes to reveal the relative wetness and weathering states. The hydrofacies classifications are robust to the choice of initial mean values used in the classification and noncontemporaneous timing of geophysical data acquisition. These results will lead to improved interdisciplinary models of CZ processes at various scales and to an increased ability to predict the hydrologic timing and partitioning. Beyond the hillslope scale, this enhanced capability to compare CZ architecture can also be exploited at the catchment scale with implications for improved understanding of the link between rock weathering, hydrochemical fluxes, and landscape morphology. 
    more » « less
  4. Abstract Hydrologic modeling has been a useful approach for analyzing water partitioning in catchment systems. It will play an essential role in studying the responses of watersheds under projected climate changes. Numerous studies have shown it is critical to include subsurface heterogeneity in the hydrologic modeling to correctly simulate various water fluxes and processes in the hydrologic system. In this study, we test the idea of incorporating geophysics‐obtained subsurface critical zone (CZ) structures in the hydrologic modeling of a mountainous headwater catchment. The CZ structure is extracted from a three‐dimensional seismic velocity model developed from a series of two‐dimensional velocity sections inverted from seismic travel time measurements. Comparing different subsurface models shows that geophysics‐informed hydrologic modeling better fits the field observations, including streamflow discharge and soil moisture measurements. The results also show that this new hydrologic modeling approach could quantify many key hydrologic fluxes in the catchment, including streamflow, deep infiltration, and subsurface water storage. Estimations of these fluxes from numerical simulations generally have low uncertainties and are consistent with estimations from other methods. In particular, it is straightforward to calculate many hydraulic fluxes or states that may not be measured directly in the field or separated from field observations. Examples include quickflow/subsurface lateral flow, soil/rock moisture, and deep infiltration. Thus, this study provides a useful approach for studying the hydraulic fluxes and processes in the deep subsurface (e.g., weathered bedrock), which needs to be better represented in many earth system models. 
    more » « less
  5. Abstract. Heterotrophic prokaryotic production (BP) was studied in the western tropical South Pacific (WTSP) using the leucine technique, revealing spatial and temporal variability within the region. Integrated over the euphotic zone, BP ranged from 58 to 120mg Cm−2d−1 within the Melanesian Archipelago, and from 31 to 50mg Cm−2d−1 within the western subtropical gyre. The collapse of a bloom was followed during 6 days in the south of Vanuatu using a Lagrangian sampling strategy. During this period, rapid evolution was observed in the three main parameters influencing the metabolic state: BP, primary production (PP) and bacterial growth efficiency. With N2 fixation being one of the most important fluxes fueling new production, we explored relationships between BP, PP and N2 fixation rates over the WTSP. The contribution of N2 fixation rates to bacterial nitrogen demand ranged from 3 to 81%. BP variability was better explained by the variability of N2 fixation rates than by that of PP in surface waters of the Melanesian Archipelago, which were characterized by N-depleted layers and low DIP turnover times (TDIP<100h). This is consistent with the fact that nitrogen was often one of the main factors controlling BP on short timescales, as shown using enrichment experiments, followed by dissolved inorganic phosphate (DIP) near the surface and labile organic carbon deeper in the euphotic zone. However, BP was more significantly correlated with PP, but not with N2 fixation rates where DIP was more available (TDIP>100h), deeper in the Melanesian Archipelago, or within the entire euphotic zone in the subtropical gyre. The bacterial carbon demand to gross primary production ratio ranged from 0.75 to 3.1. These values are discussed in the framework of various assumptions and conversion factors used to estimate this ratio, including the methodological errors, the daily variability of BP, the bacterial growth efficiency and one bias so far not considered: the ability for Prochlorococcus to assimilate leucine in the dark. 
    more » « less