skip to main content


Title: How charges separate: correlating disorder, free energy, and open-circuit voltage in organic photovoltaics
In order for a photovoltaic cell to function, charge carriers produced by photoexcitation must fully dissociate and overcome their mutual Coulomb attraction to form free polarons. This becomes problematic in organic systems in which the low dielectric constant of the material portends a long separation distance between independent polaron pairs. In this paper, we discuss our recent efforts to correlate the role of density of states, entropy, and configurational and energetic disorder to the open-circuit voltage, V OC , of model type-II organic polymer photovoltaics. By comparing the results of a fully interacting lattice model to those predicted by a Wigner–Weisskopf type model we find that energetic disorder does play a significant role in determining the V OC ; however, mobility perpendicular to the interface plays the deciding role in the eventual fate of a charge-separated pair.  more » « less
Award ID(s):
1664971
NSF-PAR ID:
10098608
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Faraday Discussions
ISSN:
1359-6640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Characterizing the density of states (DOS) width accurately is critical in understanding the charge‐transport properties of organic semiconducting materials as broader DOS distributions lead to an inferior transport. From a morphological standpoint, the relative densities of ordered and disordered regions are known to affect charge‐transport properties in films; however, a comparison between molecular structures showing quantifiable ordered and disordered regions at an atomic level and its impact on DOS widths and charge‐transport properties has yet to be made. In this work, for the first time, the DOS distribution widths of two model conjugated polymer systems are characterized using three different techniques. A quantitative correlation between energetic disorder from band‐bending measurements and charge transport is established, providing direct experimental evidence that charge‐carrier mobility in disordered materials is compromised due to the relaxation of carriers into the tail states of the DOS. Distinction and quantification of ordered and disordered regions of thin films at an atomic level is achieved using solid‐state NMR spectroscopy. An ability to compare solid‐state film morphologies of organic semiconducting polymers to energetic disorder, and in turn charge transport, can provide useful guidelines for applications of organic conjugated polymers in pertinent devices.

     
    more » « less
  2. Isotopic substitution is a useful method to study the influence of nuclear motion on the kinetics of charge transport in semiconductors. However, in organic semiconductors, no observable isotope effect on field‐effect mobility has been reported. To understand the charge transport mechanism in rubrene, the benchmark organic semiconductor, crystals of fully isotopically substituted rubrene,13C‐rubrene (13C42H28), are synthesized and characterized. Vapor‐grown13C‐rubrene single crystals have the same crystal structure and quality as native rubrene crystals (i.e., rubrene with a natural abundance of carbon isotopes). The characteristic transport signatures of rubrene, including room temperature hole mobility over 10 cm2V−1s−1, intrinsic band‐like transport, and clear Hall behavior in the accumulation layer of air‐gap transistors, are also observed for13C‐rubrene crystals. The field‐effect mobility distributions based on 74 rubrene and13C‐rubrene devices, respectively, reveal that13C isotopic substitution produces a 13% reduction in the hole mobility of rubrene. The origin of the negative isotope effect is linked to the redshift of vibrational frequencies after13C‐substitution, as demonstrated by computer simulations based on the transient localization (dynamic disorder) scenario. Overall, the data and analysis provide an important benchmark for ongoing efforts to understand transport in ordered organic semiconductors.

     
    more » « less
  3. Building on our previous works that compared the efficacy of terpolymers vs. ternary blends in improving the performance of bulk heterojunction organic solar cells, the final piece of this series of studies focuses on comparing terpolymer and ternary blends constructed with two polymers with structurally similar backbones (monoCNTAZ and FTAZ) yet markedly different open circuit voltage ( V oc ) values. Terpolymers and ternary blends of five different ratios were studied and the results demonstrate that while the overall performance of both the systems is similar, the ternary blends exhibit higher short circuit current ( J sc ) values, while the terpolymers exhibit higher V oc values. Investigation of the charge transfer state using low-energy external quantum efficiency (EQE) indicates that the ternary blends are governed by a parallel-like mechanism, while the terpolymer does not follow this mechanism. The key morphological difference between the systems, as elucidated by resonance soft X-ray scattering (RSoXS), is the slightly smaller size (∼60 nm) of domains in the ternary blends compared to that of the terpolymer (∼80 nm), which may affect exciton harvesting in the terpolymer system and lead to lower J sc values. In addition, a lower driving force for the formation of charge transfer (CT) state is also likely to contribute to the lower J sc values in the terpolymer system. All together, the data show that structurally similar (perhaps even miscible) polymers still exhibit key differences in performance when paired in terpolymers vs. ternary blends and allow us to further illuminate the underlying mechanisms of such complex systems. 
    more » « less
  4. null (Ed.)
    Non-fullerene acceptors (NFAs) are highly promising materials for organic photovoltaics (OPVs). Exciton diffusion in NFAs is crucial to their photovoltaic performance, but is not yet well understood. Here we systematically examine exciton diffusion in a fused-ring electron acceptor (IDIC) based on a first-principles framework. We discover that low-energy excitons in disordered IDIC are charge-separated with electrons and holes residing on neighboring molecules, yielding long exciton lifetimes. With low energetic disorder, high exciton density of states (DOS) and long lifetimes, the disordered IDIC is predicted to exhibit large exciton diffusion lengths and high quantum efficiency. The temperature and energy dependences of exciton diffusion are explored and the manner in which various materials properties (exciton energy, DOS, energetic disorder, and phonon frequency) conspire to influence exciton diffusion is elucidated. Finally, we show that dilation could be an effective strategy to increase the exciton diffusion length in IDIC. 
    more » « less
  5. Air‐stable p‐type SnF2:Cs2SnI6with a bandgap of 1.6 eV has been demonstrated as a promising material for Pb‐free halide perovskite solar cells. Crystalline Cs2SnI6phase is obtained with CsI, SnI2, and SnF2salts in gamma‐butyrolactone solvent, but not with dimethyl sulfoxide andN,N‐dimethylformamide solvents. Cs2SnI6is found to be stable for at least 1000 h at 100 °C when dark annealed in nitrogen atmosphere. In this study, Cs2SnI6has been used in a superstrate n–i–p planar device structure enabled by a spin‐coated absorber thickness of ≈2 μm on a chemical bath deposited Zn(O,S) electron transport layer. The best device power conversion efficiency reported here is 5.18% withVOCof 0.81 V, 9.28 mA cm−2JSC, and 68% fill factor. The dark saturation current and diode ideality factor are estimated as 1.5 × 10−3 mA cm−2and 2.18, respectively. The devices exhibit a highVOCdeficit and low short‐circuit current density due to high bulk and interface recombination. Device efficiency can be expected to increase with improvement in material and interface quality, charge transport, and device engineering.

     
    more » « less