skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Economics of Cryptocurrency Pump and Dump Schemes
The surge of interest in cryptocurrencies has been accompanied by a proliferation of fraud. This paper examines pump and dump schemes. The recent explosion of nearly 2,000 cryptocurrencies in an unregulated environment has expanded the scope for abuse. We quantify the scope of cryptocurrency pump and dump on Discord and Telegram, two popular group-messaging platforms.We joined all relevant Telegram and Discord groups/channels and identifiednearly 5,000 different pumps. Our findings provide the first measure of the scope of pumps and suggest that this phenomenon is widespread and prices often rise significantly. We also examine which factors affect the pump’s “success".  more » « less
Award ID(s):
1714291
PAR ID:
10098691
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Workshop on the Economics of Information Security
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As the number of cryptocurrencies has exploded in recent years, so too has the fraud. One popular strategy is when actors promote coordinated purchases of coins in hopes of temporarily driving up prices. Prior work investigating such pump and dump schemes has focused on the immediate impact to prices following pump signals, which were largely interpreted as following the same strategy. The reality, as with most cybercrimes, is that the operators of the schemes try out a much more heterogeneous mix of tactics. From a population of 12,252 pump signals observed between July 2017 and January 2019, we identify and examine 3,683 so-called target-based pump signals that announce promoted coins alongside buy and sell targets, but without a coordinated purchase time. We develop a strategy to measure the success of target pumps over longer time horizons. We find that around half of these pumps reach at least one of their sell targets, and that reaching their peak price often takes days, as opposed to the seconds or minutes required in pumps studied previously. We also examine the various groups promoting coins and present evidence that groups try a variety of distinct strategies and experience varying success. We find that the most successful groups promote many coins and issue many pumps, but not for the same coins. As decentralized finance becomes more popular, a deeper understanding of price manipulation techniques like target pumps is needed to combat fraud. 
    more » « less
  2. Abstract The integration of variable and intermittent renewable energy generation into the power system is a grand challenge to our efforts to achieve a sustainable future. Flexible demand is one solution to this challenge, where the demand can be controlled to follow energy supply, rather than the conventional way of controlling energy supply to follow demand. Recent research has shown that electric building climate control systems like heat pumps can provide this demand flexibility by effectively storing energy as heat in the thermal mass of the building. While some forms of heat pump demand flexibility have been implemented in the form of peak pricing and utility demand response programs, controlling heat pumps to provide ancillary services like frequency regulation, load following, and reserve have yet to be widely implemented. In this paper, we review the recent advances and remaining challenges in controlling heat pumps to provide these grid services. This analysis includes heat pump and building modeling, control methods both for isolated heat pumps and heat pumps in aggregate, and the potential implications that this concept has on the power system. 
    more » « less
  3. null (Ed.)
    Bacterial genomes encode various multidrug efflux pumps (MDR) whose specific conditions for fitness advantage are unknown. We show that the efflux pump MdtEF-TolC, in Escherichia coli, confers a fitness advantage during exposure to extreme acid (pH 2). Our flow cytometry method revealed pH-dependent fitness tradeoffs between bile acids (a major pump substrate) and salicylic acid, a membrane-permeant aromatic acid that induces a drug-resistance regulon but depletes proton motive force (PMF). The PMF drives MdtEF-TolC and related pumps such as AcrAB-TolC. Deletion of mdtE (with loss of pump MdtEF-TolC) increased the strain’s relative fitness during growth with or without salicylate or bile acids. However, when the growth cycle included a 2-h incubation at pH 2 (below the pH growth range), MdtEF-TolC conferred a fitness advantage. The fitness advantage required bile salts but was decreased by the presence of salicylate, whose uptake is amplified by acid. For comparison, AcrAB-TolC, the primary efflux pump for bile acids, conferred a PMF-dependent fitness advantage with or without acid exposure in the growth cycle. A different MDR pump, EmrAB-TolC, confered no selective benefit during growth in the presence of bile acids. Without bile acids, all three MDR pumps incurred a large fitness cost with salicylate when exposed at pH 2. These results are consistent with the increased uptake of salicylate at low pH. Overall, we showed that MdtEF-TolC is an MDR pump adapted for transient extreme-acid exposure; and that low pH amplifies the salicylate-dependent fitness cost for drug pumps. IMPORTANCE Antibiotics and other drugs that reach the gut must pass through stomach acid. Yet little is known of how extreme acid modulates the effect of drugs on gut bacteria. We find that extreme-acid exposure leads to a fitness advantage for a multidrug pump that otherwise incurs a fitness cost. At the same time, extreme acid amplifies the effect of salicylate selection against multidrug pumps. Thus, organic acids and stomach acid could play important roles in regulating multidrug resistance in the gut microbiome. Our flow cytometry assay provides a way to measure the fitness effects of extreme-acid exposure to various membrane-soluble organic acids including plant-derived nutrients and pharmaceutical agents. Therapeutic acids might be devised to control the prevalence of multidrug pumps in environmental and host-associated habitats. 
    more » « less
  4. Zhou, Ning-Yi (Ed.)
    ABSTRACT Multidrug efflux pumps are the frontline defense mechanisms of Gram-negative bacteria, yet little is known of their relative fitness trade-offs under gut conditions such as low pH and the presence of antimicrobial food molecules. Low pH contributes to the proton-motive force (PMF) that drives most efflux pumps. We show how the PMF-dependent pumps AcrAB-TolC, MdtEF-TolC, and EmrAB-TolC undergo selection at low pH and in the presence of membrane-permeant phytochemicals. Competition assays were performed by flow cytometry of co-culturedEscherichia coliK-12 strains possessing or lacking a given pump complex. All three pumps showed negative selection under conditions that deplete PMF (pH 5.5 with carbonyl cyanide 3-chlorophenylhydrazone or at pH 8.0). At pH 5.5, selection against AcrAB-TolC was increased by aromatic acids, alcohols, and related phytochemicals such as methyl salicylate. The degree of fitness cost for AcrA was correlated with the phytochemical’s lipophilicity (logP). Methyl salicylate and salicylamide selected strongly against AcrA, without genetic induction of drug resistance regulons. MdtEF-TolC and EmrAB-TolC each had a fitness cost at pH 5.5, but salicylate or benzoate made the fitness contribution positive. Pump fitness effects were not explained by gene expression (measured by digital PCR). Between pH 5.5 and 8.0,acrAandemrAwere upregulated in the log phase, whereasmdtEexpression was upregulated in the transition-to-stationary phase and at pH 5.5 in the log phase. Methyl salicylate did not affect pump gene expression. Our results suggest that lipophilic non-acidic molecules select against a major efflux pump without inducing antibiotic resistance regulons.IMPORTANCEFor drugs that are administered orally, we need to understand how ingested phytochemicals modulate drug resistance in our gut microbiome. Bacteria maintain low-level resistance by proton-motive force (PMF)-driven pumps that efflux many different antibiotics and cell waste products. These pumps play a key role in bacterial defense by conferring resistance to antimicrobial agents at first exposure while providing time for a pathogen to evolve resistance to higher levels of the antibiotic exposed. Nevertheless, efflux pumps confer energetic costs due to gene expression and pump energy expense. The bacterial PMF includes the transmembrane pH difference (ΔpH), which may be depleted by permeant acids and membrane disruptors. Understanding the fitness costs of efflux pumps may enable us to develop resistance breakers, that is, molecules that work together with antibiotics to potentiate their effect. Non-acidic aromatic molecules have the advantage that they avoid the Mar-dependent induction of regulons conferring other forms of drug resistance. We show that different pumps have distinct selection criteria, and we identified non-acidic aromatic molecules as promising candidates for drug resistance breakers. 
    more » « less
  5. Recent availability of warm water cooling systems that can be easily retrofitted to stock server by replacing the heatsinks with coldplates have made it possible to use such cooling for non-HPC cloud/data center servers. These cooling systems use internal pumps in rack-level heat exchangers as well as external pumps that can fail. We present a systematic study of the pump failures that disrupt flow in the cooling system, propose and experimentally evaluate techniques for reducing service disruptions during failures while avoiding damage to the servers where water cooling has failed. 
    more » « less