skip to main content


Title: Providing Grid Services With Heat Pumps: A Review
Abstract The integration of variable and intermittent renewable energy generation into the power system is a grand challenge to our efforts to achieve a sustainable future. Flexible demand is one solution to this challenge, where the demand can be controlled to follow energy supply, rather than the conventional way of controlling energy supply to follow demand. Recent research has shown that electric building climate control systems like heat pumps can provide this demand flexibility by effectively storing energy as heat in the thermal mass of the building. While some forms of heat pump demand flexibility have been implemented in the form of peak pricing and utility demand response programs, controlling heat pumps to provide ancillary services like frequency regulation, load following, and reserve have yet to be widely implemented. In this paper, we review the recent advances and remaining challenges in controlling heat pumps to provide these grid services. This analysis includes heat pump and building modeling, control methods both for isolated heat pumps and heat pumps in aggregate, and the potential implications that this concept has on the power system.  more » « less
Award ID(s):
1711546
NSF-PAR ID:
10177153
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ASME Journal of Engineering for Sustainable Buildings and Cities
Volume:
1
Issue:
1
ISSN:
2642-6641
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background and Situation Analysis

    The importance of Water Sanitation and Hygiene (WASH) projects for the protection of health is embedded in the sustainable development goals. However, within the development and humanitarian fields sustainability of WASH projects is still a challenge with 30–50% of projects failing within two to five years of implementation. Though failure is not linked to any one source, a common theme speaks to a greater need for community engagement and integration of the wants and needs of the end-user in the design process. Social marketing, with its focus on the consumer and use of commercial marketing strategies to achieve behavior change is a promising approach that can be integrated into ongoing WASH initiatives to meet program outcomes and to achieve long-term sustainability.

    Priority audience

    Primary audience includes technicians who manufacture and repair pitcher pumps. Secondary audience includes community members in Toamasina, Madagascar, who will experience a decrease in exposure to lead through their water supply.

    Behavioral objectives

    Decrease exposure to lead (Pb) introduced through the use of a decentralized, self-supply water system, the pitcher pump. Specifically, decrease use of leaded components in the manufacturing and repair of pitcher-pumps

    Strategy/Intervention

    Development of the intervention followed the social marketing process including conducting a situational analysis, identification and selection of a behavioral focus and priority population, formative research, development of an integrated marketing strategy, pretesting the strategy, followed by campaign implementation, and monitoring and evaluation. An intervention focused on building a sense of community and introducing the element of professionalism for the pump manufacturers was developed, consisting of personalized one-on-one outreach to raise awareness of the health topic, followed by skill building trainings on how to make the switch to non-leaded components. This was coupled with tangible products that created a new professional network, documentation of work, and backing of work by trusted government entities.

    Evaluation Methods and Results

    Using the theory of planned behavior, a pre/post-test summative evaluation was developed. Preliminary results indicate that pump technicians no longer use lead in pumps unless specifically requested by the pump owners. These results indicate a positive shift towards the use of lead-free components with project follow-up and analysis ongoing.

    Recommendations for Social Marketing Practice

    Use of social marketing within the WASH sector is lacking. This paper demonstrates the integration of social marketing in an ongoing WASH project. Through a description of each step of the process, our experiences in implementing it and the lessons learned, we hope to guide future integration. Additionally, this paper demonstrates the convergence of engineers and social marketers working collaboratively on an interdisciplinary team and how this served to enhance project understanding, aid in building local partnerships and help with long-term sustainability.

     
    more » « less
  2. Power grids are evolving at an unprecedented pace due to the rapid growth of distributed energy resources (DER) in communities. These resources are very different from traditional power sources as they are located closer to loads and thus can significantly reduce transmission losses and carbon emissions. However, their intermittent and variable nature often results in spikes in the overall demand on distribution system operators (DSO). To manage these challenges, there has been a surge of interest in building decentralized control schemes, where a pool of DERs combined with energy storage devices can exchange energy locally to smooth fluctuations in net demand. Building a decentralized market for transactive microgrids is challenging because even though a decentralized system provides resilience, it also must satisfy requirements like privacy, efficiency, safety, and security, which are often in conflict with each other. As such, existing implementations of decentralized markets often focus on resilience and safety but compromise on privacy. In this paper, we describe our platform, called TRANSAX, which enables participants to trade in an energy futures market, which improves efficiency by finding feasible matches for energy trades, enabling DSOs to plan their energy needs better. TRANSAX provides privacy to participants by anonymizing their trading activity using a distributed mixing service, while also enforcing constraints that limit trading activity based on safety requirements, such as keeping planned energy flow below line capacity. We show that TRANSAX can satisfy the seemingly conflicting requirements of efficiency, safety, and privacy. We also provide an analysis of how much trading efficiency is lost. Trading efficiency is improved through the problem formulation which accounts for temporal flexibility, and system efficiency is improved using a hybrid-solver architecture. Finally, we describe a testbed to run experiments and demonstrate its performance using simulation results. 
    more » « less
  3. Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments. 
    more » « less
  4. null (Ed.)
    With the deployment of artificial intelligent (AI) algorithms in a large variety of applications, there creates an increasing need for high-performance computing capabilities. As a result, different hardware platforms have been utilized for acceleration purposes. Among these hardware-based accelerators, the field-programmable gate arrays (FPGAs) have gained a lot of attention due to their re-programmable characteristics, which provide customized control logic and computing operators. For example, FPGAs have recently been adopted for on-demand cloud services by the leading cloud providers like Amazon and Microsoft, providing acceleration for various compute-intensive tasks. While the co-residency of multiple tenants on a cloud FPGA chip increases the efficiency of resource utilization, it also creates unique attack surfaces that are under-explored. In this paper, we exploit the vulnerability associated with the shared power distribution network on cloud FPGAs. We present a stealthy power attack that can be remotely launched by a malicious tenant, shutting down the entire chip and resulting in denial-of-service for other co-located benign tenants. Specifically, we propose stealthy-shutdown: a well-timed power attack that can be implemented in two steps: (1) an attacker monitors the realtime FPGA power-consumption detected by ring-oscillator-based voltage sensors, and (2) when capturing high power-consuming moments, i.e., the power consumption by other tenants is above a certain threshold, she/he injects a well-timed power load to shut down the FPGA system. Note that in the proposed attack strategy, the power load injected by the attacker only accounts for a small portion of the overall power consumption; therefore, such attack strategy remains stealthy to the cloud FPGA operator. We successfully implement and validate the proposed attack on three FPGA evaluation kits with running real-world applications. The proposed attack results in a stealthy-shutdown, demonstrating severe security concerns of co-tenancy on cloud FPGAs. We also offer two countermeasures that can mitigate such power attacks. 
    more » « less
  5. Textile-based compression devices are widely used in fields such as healthcare, astronautics, cosmetics, defense, and more. While traditional compression garments are only able to apply passive pressure on the body, there have been some efforts to integrate smart materials such as shape memory alloys (SMAs) to make compression garments active and controllable. However, despite the advances in this field, accurate control of applied pressure on the body due remains a challenge due to vast population-scale anthropometric variability and intra-subjects variability in tissue softness, even if the actuators themselves are fully characterized. In this study, we begin to address these challenges by developing a novel size-adjustable SMA-based smart tourniquet capable of producing a controllable pressure for circumferential applications. The developed prototype was tested on an inflatable pressure cuff wrapped around a rigid cylinder. The thermal activation of SMA coils was achieved through Joule heating, and a microcontroller and a programmable power supply are used to provide the input signal. To control the compression force, a closed-loop PID controller was implemented, and the performance of the system was evaluated in 5 different testing conditions for variable and cyclic compression levels. The experiments showed that the controlled system could follow the desired control pressure reference with a steady-state of 1 mmHg. The compression tourniquet is able to produce more than 33 mmHg with an average actuation rate of 0.19 mmHg/s. This is the first demonstration of accurate closed-loop control of an SMA-incorporated compression technology to the best of our knowledge. This paper enables new, dynamic systems with controllable activation and low-effort donning and doffing, with applications ranging from healthcare solutions to advanced spacesuit design. 
    more » « less