We study the atomic embeddability testing problem, which is a common generalization of clustered planarity ( c-planarity , for short) and thickenability testing, and present a polynomial-time algorithm for this problem, thereby giving the first polynomial-time algorithm for c-planarity. C-planarity was introduced in 1995 by Feng, Cohen, and Eades as a variant of graph planarity, in which the vertex set of the input graph is endowed with a hierarchical clustering and we seek an embedding (crossing free drawing) of the graph in the plane that respects the clustering in a certain natural sense. Until now, it has been an open problem whether c-planarity can be tested efficiently. The thickenability problem for simplicial complexes emerged in the topology of manifolds in the 1960s. A 2-dimensional simplicial complex is thickenable if it embeds in some orientable 3-dimensional manifold. Recently, Carmesin announced that thickenability can be tested in polynomial time. Our algorithm for atomic embeddability combines ideas from Carmesin’s work with algorithmic tools previously developed for weak embeddability testing. We express our results purely in terms of graphs on surfaces, and rely on the machinery of topological graph theory. Finally, we give a polynomial-time reduction from atomic embeddability to thickenability thereby showing that both problems are polynomially equivalent, and show that a slight generalization of atomic embeddability to the setting in which clusters are toroidal graphs is NP-complete.
more »
« less
A CR Embedding Problem for an Algebraic Levi Non-degenerate Hypersurface into a Hyperquadric
We give a survey on the current developments of the embeddability problem of a Levi non-degenerate hypersurface into its model, i.e., hyerquadrics.We also formulate and study a local sums-of-squares problem, and make connections with the embeddability problem.
more »
« less
- Award ID(s):
- 1800549
- PAR ID:
- 10099164
- Date Published:
- Journal Name:
- Geometric Complex Analysis
- Volume:
- 246
- Page Range / eLocation ID:
- 185-198
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the atomic embeddability testing problem, which is a common generalization of clustered planarity (c-planarity, for short) and thickenability testing, and present a polynomial time algorithm for this problem, thereby giving the first polynomial time algorithm for c-planarity. C-planarity was introduced in 1995 by Feng, Cohen, and Eades as a variant of graph planarity, in which the vertex set of the input graph is endowed with a hierarchical clustering and we seek an embedding (crossing free drawing) of the graph in the plane that respects the clustering in a certain natural sense. Until now, it has been an open problem whether c-planarity can be tested efficiently, despite relentless efforts. The thickenability problem for simplicial complexes emerged in the topology of manifolds in the 1960s. A 2-dimensional simplicial complex is thickenable if it embeds in some orientable 3-dimensional manifold. Recently, Carmesin announced that thickenability can be tested in polynomial time. Our algorithm for atomic embeddability combines ideas from Carmesin's work with algorithmic tools previously developed for weak embeddability testing. We express our results purely in terms of graphs on surfaces, and rely on the machinery of topological graph theory. Finally we give a polynomial-time reduction from c-planarity to thickenability and show that a slight generalization of atomic embeddability to the setting in which clusters are toroidal graphs is NP-complete.more » « less
-
We prove that the class of reflexive asymptotic-$$c_{0}$$ Banach spaces is coarsely rigid, meaning that if a Banach space $$X$$ coarsely embeds into a reflexive asymptotic-$$c_{0}$$ space $$Y$$, then $$X$$ is also reflexive and asymptotic-$$c_{0}$$. In order to achieve this result, we provide a purely metric characterization of this class of Banach spaces. This metric characterization takes the form of a concentration inequality for Lipschitz maps on the Hamming graphs, which is rigid under coarse embeddings. Using an example of a quasi-reflexive asymptotic-$$c_{0}$$ space, we show that this concentration inequality is not equivalent to the non-equi-coarse embeddability of the Hamming graphs.more » « less
-
Abstract We compare the algebras of the quantum automorphism group of finite-dimensional C$$^\ast $$-algebra $$B$$, which includes the quantum permutation group $$S_N^+$$, where $$N = \dim B$$. We show that matrix amplification and crossed products by trace-preserving actions by a finite Abelian group $$\Gamma $$ lead to isomorphic $$\ast $$-algebras. This allows us to transfer various properties such as inner unitarity, Connes embeddability, and strong $$1$$-boundedness between the various algebras associated with these quantum groups.more » « less
-
Abstract We analyze an algorithmic question about immersion theory: for which $$m$$, $$n$$, and $$CAT=\textbf{Diff}$$ or $$\textbf{PL}$$ is the question of whether an $$m$$-dimensional $CAT$-manifold is immersible in $$\mathbb{R}^{n}$$ decidable? We show that PL immersibility is decidable in all cases except for codimension 2, whereas smooth immersibility is decidable in all odd codimensions and undecidable in many even codimensions. As a corollary, we show that the smooth embeddability of an $$m$$-manifold with boundary in $$\mathbb{R}^{n}$$ is undecidable when $n-m$ is even and $$11m \geq 10n+1$$.more » « less
An official website of the United States government

