skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Differentially Private Iterative Gradient Hard Thresholding for Sparse Learning
We consider the differentially private sparse learning problem, where the goal is to estimate the underlying sparse parameter vector of a statistical model in the high-dimensional regime while preserving the privacy of each training example. We propose a generic differentially private iterative gradient hard threshoding algorithm with a linear convergence rate and strong utility guarantee. We demonstrate the superiority of our algorithm through two specific applications: sparse linear regression and sparse logistic regression. Specifically, for sparse linear regression, our algorithm can achieve the best known utility guarantee without any extra support selection procedure used in previous work [Kifer et al., 2012]. For sparse logistic regression, our algorithm can obtain the utility guarantee with a logarithmic dependence on the problem dimension. Experiments on both synthetic data and real world datasets verify the effectiveness of our proposed algorithm.  more » « less
Award ID(s):
1717950
PAR ID:
10099284
Author(s) / Creator(s):
;
Date Published:
Journal Name:
28th International Joint Conference on Artificial Intelligence
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Larochelle, Hugo; Hadsell, Raia; Cho, Kyunghyun (Ed.)
    In deep learning, leveraging transfer learning has recently been shown to be an effective strategy for training large high performance models with Differential Privacy (DP). Moreover, somewhat surprisingly, recent works have found that privately training just the last layer of a pre-trained model provides the best utility with DP. While past studies largely rely on using first-order differentially private training algorithms like DP-SGD for training large models, in the specific case of privately learning from features, we observe that computational burden is often low enough to allow for more sophisticated optimization schemes, including second-order methods. To that end, we systematically explore the effect of design parameters such as loss function and optimization algorithm. We find that, while commonly used logistic regression performs better than linear regression in the non-private setting, the situation is reversed in the private setting. We find that least-squares linear regression is much more effective than logistic regression from both privacy and computational standpoint, especially at stricter epsilon values (ε < 1). On the optimization side, we also explore using Newton’s method, and find that second-order information is quite helpful even with privacy, although the benefit significantly diminishes with stricter privacy guarantees. While both methods use second-order information, least squares is more effective at lower epsilon values while Newton’s method is more effective at larger epsilon values. To combine the benefits of both methods, we propose a novel optimization algorithm called DP-FC, which leverages feature covariance instead of the Hessian of the logistic regression loss and performs well across all ε values we tried. With this, we obtain new SOTA results on ImageNet-1k, CIFAR-100 and CIFAR-10 across all values of ε typically considered. Most remarkably, on ImageNet-1K, we obtain top-1 accuracy of 88% under DP guarantee of (8, 8 ∗ 10−7) and 84.3% under (0.1, 8 ∗ 10−7). 
    more » « less
  2. Differential privacy has emerged as a popular model to provably limit privacy risks associated with a given data release. However releasing high dimensional synthetic data under differential privacy remains a challenging problem. In this paper, we study the problem of releasing synthetic data in the form of a high dimensional histogram under the constraint of differential privacy.We develop an $$(\epsilon, \delta)$$-differentially private categorical data synthesizer called \emph{Stability Based Hashed Gibbs Sampler} (SBHG). SBHG works by combining a stability based sparse histogram estimation algorithm with Gibbs sampling and feature selection to approximate the empirical joint distribution of a discrete dataset. SBHG offers a competitive alternative to state-of-the art synthetic data generators while preserving the sparsity structure of the original dataset, which leads to improved statistical utility as illustrated on simulated data. Finally, to study the utility of the resulting synthetic data sets generated by SBHG, we also perform logistic regression using the synthetic datasets and compare the classification accuracy with those from using the original dataset. 
    more » « less
  3. We consider the problem of designing and analyzing differentially private algorithms that can be implemented on discrete models of computation in strict polynomial time, motivated by known attacks on floating point implementations of real-arithmetic differentially private algorithms (Mironov, CCS 2012) and the potential for timing attacks on expected polynomial-time algorithms. As a case study, we examine the basic problem of approximating the histogram of a categorical dataset over a possibly large data universe X. The classic Laplace Mechanism (Dwork, McSherry, Nissim, Smith, TCC 2006 and J. Privacy \& Confidentiality 2017) does not satisfy our requirements, as it is based on real arithmetic, and natural discrete analogues, such as the Geometric Mechanism (Ghosh, Roughgarden, Sundarajan, STOC 2009 and SICOMP 2012), take time at least linear in |X|, which can be exponential in the bit length of the input.   In this paper, we provide strict polynomial-time discrete algorithms for approximate histograms whose simultaneous accuracy (the maximum error over all bins) matches that of the Laplace Mechanism up to constant factors, while retaining the same (pure) differential privacy guarantee. One of our algorithms produces a sparse histogram as output. Its ``"per-bin accuracy" (the error on individual bins) is worse than that of the Laplace Mechanism by a factor of log|X|, but we prove a lower bound showing that this is necessary for any algorithm that produces a sparse histogram. A second algorithm avoids this lower bound, and matches the per-bin accuracy of the Laplace Mechanism, by producing a compact and efficiently computable representation of a dense histogram; it is based on an (n+1)-wise independent implementation of an appropriately clamped version of the Discrete Geometric Mechanism. 
    more » « less
  4. Robin J. Evans, Ilya Shpitser (Ed.)
    In Proceedings of Uncertainty in Artificial Intelligence, 31-4 August 2023, Pittsburgh, PA, USA While many solutions for privacy-preserving convex empirical risk minimization (ERM) have been developed, privacy-preserving nonconvex ERM remains a challenge. We study nonconvex ERM, which takes the form of minimizing a finite-sum of nonconvex loss functions over a training set. We propose a new differentially private stochastic gradient descent algorithm for nonconvex ERM that achieves strong privacy guarantees efficiently, and provide a tight analysis of its privacy and utility guarantees, as well as its gradient complexity. Our algorithm reduces gradient complexity while matching the best-known utility guarantee. Our experiments on benchmark nonconvex ERM problems demonstrate superior performance in terms of both training cost and utility gains compared with previous differentially private methods using the same privacy budgets. 
    more » « less
  5. Differentially private synthetic data provide a powerful mechanism to enable data analysis while protecting sensitive information about individuals. However, when the data lie in a high-dimensional space, the accuracy of the synthetic data suffers from the curse of dimensionality. In this paper, we propose a differentially private algorithm to generate low-dimensional synthetic data efficiently from a high-dimensional dataset with a utility guarantee with respect to the Wasserstein distance. A key step of our algorithm is a private principal component analysis (PCA) procedure with a near-optimal accuracy bound that circumvents the curse of dimensionality. Unlike the standard perturbation analysis, our analysis of private PCA works without assuming the spectral gap for the covariance matrix. 
    more » « less