skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of Alkyl Tail Length on CMC and Mitigation Efficiency Using Model Quaternary Ammonium Corrosion Inhibitors
Application of inhibitors is an established and cost-effective method to mitigate internal corrosion of mild steel pipelines in the oil and gas industry. Conventionally, surfactant-type organic inhibitors are frequently applied based on their critical micelle concentration (CMC) values and their adsorption to mild steel evaluated based on laboratory tests that show a reduction in corrosion rate. In this work, the relationship between reduction in corrosion rate, CMC and inhibitor surface saturation concentration on mild steel was studied using model quaternary ammonium inhibitors with different alkyl tail lengths. The quaternary ammonium model compounds were synthesized in-house and characterized by 1H-NMR before their use. Their CMCs were determined using surface tension measurements. Results showed that, although the CMC value and surface saturation concentration were the same for two of the inhibitors tested, there was no relationship observed between measured CMC values, surface saturation concentrations, and the calculated corrosion efficiencies for the five model inhibitor compounds tested. Consequently, using CMC values as a measurement for injection of inhibitors might not be considered as a reliable factor.  more » « less
Award ID(s):
1705817
PAR ID:
10099464
Author(s) / Creator(s):
Date Published:
Journal Name:
NACE Corrosion conference
Page Range / eLocation ID:
13004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrochemical atomic force microscopy (EC-AFM) experiments, including simultaneous linear polarization resistance (LPR) tests and in situ AFM imaging, under a CO2 atmosphere, were performed to investigate the adsorption characteristics and inhibition effects of a tetradecyldimethylbenzylammonium corrosion inhibitor model compound. When the inhibitor bulk concentration was at 0.5 critical micelle concentration (CMC), in situ AFM results indicated nonuniform tilted monolayer formation on the mica surface and EC-AFM results indicated partial corrosion of the UNS G10180 steel surface. At 2 CMC, a uniform tilted bilayer or perpendicular monolayer was detected on mica, and corrosion with UNS G10180 steel was uniformly retarded. Consistently, simultaneous LPR tests showed that corrosion rates decreased as the inhibitor concentration increased until it reached the surface saturation value (1 and 2 CMC). Molecular simulations have been performed to study the formation of the inhibitor layer and its molecular-level structure. Simulation results showed that at the initiation of the adsorption process, islands of adsorbed inhibitor molecules appear on the surface. These islands grow and coalesce to become a complete self-assembled layer. 
    more » « less
  2. Intermittent oil–water wetting can have a significant effect on the internal corrosion of steel pipelines. This paper presents a combined experimental and molecular modeling study of several influential factors on the surface properties and corrosion behavior of mild steel in CO2 environments. The influence of different model oils (LVT-200 and Aromatic-200) and select surface-active compounds (myristic acid, cyclohexane butyric acid, and oleic acid) on the corrosion behavior of carbon steel during intermittent oil–water wetting was determined by measuring the corrosion rate after intermittent wetting cycles. The interfacial tension measurements were performed to study the incorporation of the oil phase along with surface-active molecules in the protective layer formed on the specimen surface. Results showed that the interfacial tension for an aromatic oil–water interface is lower than that for an aliphatic oil–water interface. To understand this result, molecular dynamics simulations of oil–water interfaces were performed in the presence of surface-active molecules and different oils to analyze the structure of the layer formed at the interface. The simulations supported the hypothesis that aromatic molecules are less structured at the interface, which results in the incorporation of more water molecules into the protective layer formed at the steel surface, causing a higher corrosion rate. On the other hand, the simulations revealed that myristic acid in an aliphatic oil forms a well-aligned structure at the interface, devoid of any water molecules. This is in agreement with the hypothesis that the linear molecular structure of myristic acid favors the alignment of molecules at an aliphatic oil–water interface, resulting in a lower interfacial tension and more effective corrosion mitigation as compared to the other two nonlinear compounds tested. It is concluded that an important factor controlling the corrosion behavior is the molecular structure of the oil–water interface, which is adopted by the steel surface layer through the Langmuir–Blodgett process. 
    more » « less
  3. Bradford, Patricia A (Ed.)
    ABSTRACT Corrosion inhibitors, including zinc orthophosphate, sodium orthophosphate, and sodium silicate, are commonly used to prevent the corrosion of drinking water infrastructure. Metals such as zinc are known stressors for antibiotic resistance selection, and phosphates can increase microbial growth in drinking water distribution systems (DWDS). Yet, the influence of corrosion inhibitor type on antimicrobial resistance in DWDS is unknown. Here, we show that sodium silicates can decrease antibiotic resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), while zinc orthophosphate increases ARB and ARGs in source water microbial communities. Based on controlled bench-scale studies, zinc orthophosphate addition significantly increased the abundance of ARB resistant to ciprofloxacin, sulfonamides, trimethoprim, and vancomycin, as well as the genessul1,qacEΔ1, an indication of resistance to quaternary ammonium compounds, and the integron-integrase geneintI1. In contrast, sodium silicate dosage at 10 mg/L resulted in decreased bacterial growth and antibiotic resistance selection compared to the other corrosion inhibitor additions. Source water collected from the drinking water treatment plant intake pipe resulted in less significant changes in ARB and ARG abundance due to corrosion inhibitor addition compared to source water collected from the pier at the recreational beach. In tandem with the antibiotic resistance shifts, significant microbial community composition changes also occurred. Overall, the corrosion inhibitor sodium silicate resulted in the least selection for antibiotic resistance, which suggests it is the preferred corrosion inhibitor option for minimizing antibiotic resistance proliferation in DWDS. However, the selection of an appropriate corrosion inhibitor must also be appropriate for the water chemistry of the system (e.g., pH, alkalinity) to minimize metal leaching first and foremost and to adhere to the lead and copper rule. IMPORTANCEAntibiotic resistance is a growing public health concern across the globe and was recently labeled the silent pandemic. Scientists aim to identify the source of antibiotic resistance and control points to mitigate the spread of antibiotic resistance. Drinking water is a direct exposure route to humans and contains antibiotic-resistant bacteria and associated resistance genes. Corrosion inhibitors are added to prevent metallic pipes in distribution systems from corroding, and the type of corrosion inhibitor selected could also have implications on antibiotic resistance. Indeed, we found that sodium silicate can minimize selection of antibiotic resistance while phosphate-based corrosion inhibitors can promote antibiotic resistance. These findings indicate that sodium silicate is a preferred corrosion inhibitor choice for mitigation of antibiotic resistance. 
    more » « less
  4. We have performed all-atom classical molecular dynamics simulations of aggregation and adsorption of different corrosion inhibitor molecules on metal surfaces. We report free energies of aggregation and adsorption of imidazolinium-type (henceforth referred to as imid) and quaternary ammonium-type (referred to as quat) corrosion inhibitors of different alkyl tail lengths. Corrosion inhibitor molecules show a strong tendency to adsorb onto metal surfaces in the unaggregated state. Inhibitor micelles, on the other hand, experience a free energy barrier to adsorption. The quat micelles are found to be thermodynamically stable in the adsorbed state whereas the imid micelles are only metastable in the adsorbed state. Quat micelles deform and partially disintegrate upon adsorption, which renders stability, while the imid micelles do not deform. The inhibitor molecules demonstrate a strong tendency to aggregate into micelles in the aqueous phase. The micellization free energy is found to be ~68 kBT for a micelle comprising of 18 molecules of imid molecules. 
    more » « less
  5. The effect of varying surface roughness on microbiologically influenced corrosion by a model sulfate reducing bacteriumOleidesulfovibrio alaskensisG20 culture on copper 101 coupons was investigated using microscopic, spectroscopic and surface characterization techniques. After 7-day of anoxic exposure abundant biodeposits consisting of sessile cells and copper sulfide minerals were found and pitting attack was observed upon their removal. Results showed that the distribution and thickness of the biodeposits as well as the pitting severity were affected by the varying surface roughness. A direct relationship between surface roughness and microbial activity was not observed. However, a statistically significant reduction in the corrosion rate was recorded when the surface roughness was decreased from ∼2.71 μm to ∼0.006 μm. 
    more » « less