skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptation of olfactory receptor abundances for efficient coding
A mouse’s nose contains over 10 million receptor neurons divided into about 1,000 different types, which detect airborne chemicals – called odorants – that make up smells. Each odorant activates many different receptor types. And each receptor type responds to many different odorants. To identify a smell, the brain must therefore consider the overall pattern of activation across all receptor types. Individual receptor neurons in the mammalian nose live for about 30 days, before new cells replace them. The entire population of odorant receptor neurons turns over every few weeks, even in adults. Studies have shown that some types of these receptor neurons are used more often than others, depending on the species, and are therefore much more abundant. Moreover, the usage patterns of different receptor types can also change when individual animals are exposed to different smells. Teşileanu et al. set out to develop a computer model that can explain these observations. The results revealed that the nose adjusts its odorant receptor neurons to provide the brain with as much information as possible about typical smells in the environment. Because each smell consists of multiple odorants, each odorant is more likely to occur alongside certain others. For example, the odorants that make up the scent of a flower are more likely to occur together than alongside the odorants in diesel. The nose takes advantage of these relationships by adjusting the abundance of the receptor types in line with them. Teşileanu et al. show that exposure to odorants leads to reproducible increases or decreases in different receptor types, depending on what would provide the brain with most information. The number of odorant receptor neurons in the human nose decreases with time. The current findings could help scientists understand how these changes affect our sense of smell as we age. This will require collaboration between experimental and theoretical scientists to measure the odors typical of our environments, and work out how our odorant receptor neurons detect them.  more » « less
Award ID(s):
1734030
PAR ID:
10099889
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
eLife
Volume:
8
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Smell is one of the five senses we use to experience the world. It allows humans and other animals to find their food, avoid danger, and even recognize family members. Animals detect smells with olfactory receptors, special proteins that sit on the surface of the nose cells. These interact with odor molecules (small particles that have a smell) and send signals to the brain so the animal can perceive the smell. We know mammals have hundreds of olfactory receptors and can detect tens of thousands of smells, but what about birds? For decades, many people thought that birds did not use smell in their daily lives, but recent studies have shown that birds respond to smell. We show that many birds have a large number of olfactory receptors similar to mammals, strengthening the case for smell playing an important role in the life of birds. 
    more » « less
  2. null; null; null (Ed.)
    Microservice Architecture (MSA) is rapidly taking over modern software engineering and becoming the predominant architecture of new cloud-based applications (apps). There are many advantages to using MSA, but there are many downsides to using a more complex architecture than a typical monolithic enterprise app. Beyond the normal bad coding practices and code-smells of a typical app, MSA specific code-smells are difficult to discover within a distributed app. There are many static code analysis tools for monolithic apps, but no tool exists to offer code-smell detection for MSA-based apps. This paper proposes a new approach to detect code smells in distributed apps based on MSA. We develop an open-source tool, MSANose, which can accurately detect up to eleven different types of MSA specific code smells. We demonstrate our tool through a case study on a benchmark MSA app and verify its accuracy. Our results show that it is possible to detect code-smells within MSA apps using bytecode and or source code analysis throughout the development or before deployment to production. 
    more » « less
  3. null (Ed.)
    Microservice Architecture (MSA) is becoming the predominant direction of new cloud-based applications. There are many advantages to using microservices, but also downsides to using a more complex architecture than a typical monolithic enterprise application. Beyond the normal poor coding practices and code smells of a typical application, microservice-specific code smells are difficult to discover within a distributed application setup. There are many static code analysis tools for monolithic applications, but tools to offer code-smell detection for microservice-based applications are lacking. This paper proposes a new approach to detect code smells in distributed applications based on microservices. We develop an MSANose tool to detect up to eleven different microservice specific code smells and share it as open-source. We demonstrate our tool through a case study on two robust benchmark microservice applications and verify its accuracy. Our results show that it is possible to detect code smells within microservice applications using bytecode and/or source code analysis throughout the development process or even before its deployment to production. 
    more » « less
  4. In olfactory systems, convergence of sensory neurons onto glomeruli generates a map of odorant receptor identity. How glomerular maps relate to sensory space remains unclear. We sought to better characterize this relationship in the mouse olfactory system by defining glomeruli in terms of the odorants to which they are most sensitive. Using high-throughput odorant delivery and ultrasensitive imaging of sensory inputs, we imaged responses to 185 odorants presented at concentrations determined to activate only one or a few glomeruli across the dorsal olfactory bulb. The resulting datasets defined the tuning properties of glomeruli - and, by inference, their cognate odorant receptors - in a low-concentration regime, and yielded consensus maps of glomerular sensitivity across a wide range of chemical space. Glomeruli were extremely narrowly tuned, with ~25% responding to only one odorant, and extremely sensitive, responding to their effective odorants at sub-picomolar to nanomolar concentrations. Such narrow tuning in this concentration regime allowed for reliable functional identification of many glomeruli based on a single diagnostic odorant. At the same time, the response spectra of glomeruli responding to multiple odorants was best predicted by straightforward odorant structural features, and glomeruli sensitive to distinct odorants with common structural features were spatially clustered. These results define an underlying structure to the primary representation of sensory space by the mouse olfactory system. 
    more » « less
  5. Fiala, André; Meltzer, Hagar; Schleyer, Michael; Turrel, Oriane; Widmann, Annekathrin (Ed.)
    Associative memory in the Mushroom Body of the fruit fly brain depends on the encoding and processing of odorants in the first three stages of the Early Olfactory System: the Antenna, the Antennal Lobe and the Mushroom Body Calyx. The Kenyon Cells (KCs) of the Calyx provide the Mushroom Body compartments the identity of pure and odorant mixtures encoded as a train of spikes. Characterizing the code underlying the KC spike trains is a major challenge in neuroscience. To address this challenge we start by explicitly modeling the space of odorants using constructs of both semantic and syntactic information. Odorant semantics concerns the identity of odorants while odorant syntactics pertains to their concentration amplitude. These odorant attributes are multiplicatively coupled in the process of olfactory transduction. A key question that early olfactory systems must address is how to disentangle the odorant semantic information from the odorant syntactic information. To address the untanglement we devised an Odorant Encoding Machine (OEM) modeling the first three stages of early olfactory processing in the fruit fly brain. Each processing stage is modeled by Divisive Normalization Processors (DNPs). DNPs are spatio-temporal models of canonical computation of brain circuits. The end-to-end OEM is constructed as cascaded DNPs. By extensively modeling and characterizing the processing of pure and odorant mixtures in the Calyx, we seek to answer the question of its functional significance. We demonstrate that the DNP circuits in the OEM combinedly reduce the variability of the Calyx response to odorant concentration, thereby separating odorant semantic information from syntactic information. We then advance a code, called first spike sequence code, that the KCs make available at the output of the Calyx. We show that the semantics of odorants can be represented by this code in the spike domain and is ready for easy memory access in the Mushroom Body compartments. 
    more » « less