skip to main content


Title: Scaling Phononic Quantum Networks of Solid-State Spins with Closed Mechanical Subsystems
Phononic quantum networks feature distinct advantages over photonic networks for on-chip quantum communications, providing a promising platform for developing quantum computers with robust solid-state spin qubits. Large mechanical networks including one-dimensional chains of trapped ions, however, have inherent and well-known scaling problems. In addition, chiral phononic processes, which are necessary for conventional phononic quantum networks, are difficult to implement in a solid-state system. To overcome these seemingly unsolvable obstacles, we have developed a new network architecture that breaks a large mechanical network into small and closed mechanical subsystems. This architecture is implemented in a diamond phononic nanostructure featuring alternating phononic crystal waveguides with specially-designed bandgaps. The implementation also includes nanomechanical resonators coupled to color centers through phonon-assisted transitions as well as quantum state transfer protocols that can be robust against the thermal environment.  more » « less
Award ID(s):
1641084
NSF-PAR ID:
10099952
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Physical review. X
Volume:
8
ISSN:
2160-3308
Page Range / eLocation ID:
041027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    We show that deep convolutional neural networks (CNNs) can massively outperform traditional densely connected neural networks (NNs) (both deep or shallow) in predicting eigenvalue problems in mechanics. In this sense, we strike out in a new direction in mechanics computations with strongly predictive NNs whose success depends not only on architectures being deep but also being fundamentally different from the widely used to date. We consider a model problem: predicting the eigenvalues of one‐dimensional (1D) and two‐dimensional (2D) phononic crystals. For the 1D case, the optimal CNN architecture reaches 98% accuracy level on unseen data when trained with just 20 000 samples, compared to 85% accuracy even with 100 000 samples for the typical network of choice in mechanics research. We show that, with relatively high data efficiency, CNNs have the capability to generalize well and automatically learn deep symmetry operations, easily extending to higher dimensions and our 2D case. Most importantly, we show how CNNs can naturally represent mechanical material tensors, with its convolution kernels serving as local receptive fields, which is a natural representation of mechanical response. Strategies proposed are applicable to other mechanics' problems and may, in the future, be used to sidestep cumbersome algorithms with purely data‐driven approaches based upon modern deep architectures.

     
    more » « less
  2. Abstract

    In solid state physics, a bandgap (BG) refers to a range of energies where no electronic states can exist. This concept was extended to classical waves, spawning the entire fields of photonic and phononic crystals where BGs are frequency (or wavelength) intervals where wave propagation is prohibited. For elastic waves, BGs are found in periodically alternating mechanical properties (i.e., stiffness and density). This gives birth to phononic crystals and later elastic metamaterials that have enabled unprecedented functionalities for a wide range of applications. Planar metamaterials are built for vibration shielding, while a myriad of works focus on integrating phononic crystals in microsystems for filtering, waveguiding, and dynamical strain energy confinement in optomechanical systems. Furthermore, the past decade has witnessed the rise of topological insulators, which leads to the creation of elastodynamic analogs of topological insulators for robust manipulation of mechanical waves. Meanwhile, additive manufacturing has enabled the realization of 3D architected elastic metamaterials, which extends their functionalities. This review aims to comprehensively delineate the rich physical background and the state‐of‐the art in elastic metamaterials and phononic crystals that possess engineered BGs for different functionalities and applications, and to provide a roadmap for future directions of these manmade materials.

     
    more » « less
  3. Abstract The development of statistical tools based on machine learning (ML) and deep networks is actively sought for materials design problems. While structure-property relationships can be accurately determined using quantum mechanical methods, these first-principles calculations are computationally demanding, limiting their use in screening a large set of candidate structures. Herein, we use convolutional neural networks to develop a predictive model for the electronic properties of metal halide perovskites (MHPs) that have a billions-range materials design space. We show that a well-designed hierarchical ML approach has a higher fidelity in predicting properties of the MHPs compared to straight-forward methods. In this architecture, each neural network element has a designated role in the estimation process from predicting complex features of the perovskites such as lattice constant and octahedral till angle to narrowing down possible ranges for the values of interest. Using the hierarchical ML scheme, the obtained root-mean-square errors for the lattice constants, octahedral angle and bandgap for the MHPs are 0.01 Å, 5°, and 0.02 eV, respectively. Our study underscores the importance of a careful network design and a hierarchical approach to alleviate issues associated with imbalanced dataset distributions, which is invariably common in materials datasets. 
    more » « less
  4. Abstract

    Optomechanical systems offer new opportunities in quantum information processing and quantum sensing. Many solid-state quantum devices operate at millikelvin temperatures—however, it has proven challenging to operate nanoscale optomechanical devices at these ultralow temperatures due to their limited thermal conductance and parasitic optical absorption. Here, we present a two-dimensional optomechanical crystal resonator capable of achieving large cooperativityCand small effective bath occupancynb, resulting in a quantum cooperativityCeff ≡ C/nb > 1 under continuous-wave optical driving. This is realized using a two-dimensional phononic bandgap structure to host the optomechanical cavity, simultaneously isolating the acoustic mode of interest in the bandgap while allowing heat to be removed by phonon modes outside of the bandgap. This achievement paves the way for a variety of applications requiring quantum-coherent optomechanical interactions, such as transducers capable of bi-directional conversion of quantum states between microwave frequency superconducting quantum circuits and optical photons in a fiber optic network.

     
    more » « less
  5. BACKGROUND Optical sensing devices measure the rich physical properties of an incident light beam, such as its power, polarization state, spectrum, and intensity distribution. Most conventional sensors, such as power meters, polarimeters, spectrometers, and cameras, are monofunctional and bulky. For example, classical Fourier-transform infrared spectrometers and polarimeters, which characterize the optical spectrum in the infrared and the polarization state of light, respectively, can occupy a considerable portion of an optical table. Over the past decade, the development of integrated sensing solutions by using miniaturized devices together with advanced machine-learning algorithms has accelerated rapidly, and optical sensing research has evolved into a highly interdisciplinary field that encompasses devices and materials engineering, condensed matter physics, and machine learning. To this end, future optical sensing technologies will benefit from innovations in device architecture, discoveries of new quantum materials, demonstrations of previously uncharacterized optical and optoelectronic phenomena, and rapid advances in the development of tailored machine-learning algorithms. ADVANCES Recently, a number of sensing and imaging demonstrations have emerged that differ substantially from conventional sensing schemes in the way that optical information is detected. A typical example is computational spectroscopy. In this new paradigm, a compact spectrometer first collectively captures the comprehensive spectral information of an incident light beam using multiple elements or a single element under different operational states and generates a high-dimensional photoresponse vector. An advanced algorithm then interprets the vector to achieve reconstruction of the spectrum. This scheme shifts the physical complexity of conventional grating- or interference-based spectrometers to computation. Moreover, many of the recent developments go well beyond optical spectroscopy, and we discuss them within a common framework, dubbed “geometric deep optical sensing.” The term “geometric” is intended to emphasize that in this sensing scheme, the physical properties of an unknown light beam and the corresponding photoresponses can be regarded as points in two respective high-dimensional vector spaces and that the sensing process can be considered to be a mapping from one vector space to the other. The mapping can be linear, nonlinear, or highly entangled; for the latter two cases, deep artificial neural networks represent a natural choice for the encoding and/or decoding processes, from which the term “deep” is derived. In addition to this classical geometric view, the quantum geometry of Bloch electrons in Hilbert space, such as Berry curvature and quantum metrics, is essential for the determination of the polarization-dependent photoresponses in some optical sensors. In this Review, we first present a general perspective of this sensing scheme from the viewpoint of information theory, in which the photoresponse measurement and the extraction of light properties are deemed as information-encoding and -decoding processes, respectively. We then discuss demonstrations in which a reconfigurable sensor (or an array thereof), enabled by device reconfigurability and the implementation of neural networks, can detect the power, polarization state, wavelength, and spatial features of an incident light beam. OUTLOOK As increasingly more computing resources become available, optical sensing is becoming more computational, with device reconfigurability playing a key role. On the one hand, advanced algorithms, including deep neural networks, will enable effective decoding of high-dimensional photoresponse vectors, which reduces the physical complexity of sensors. Therefore, it will be important to integrate memory cells near or within sensors to enable efficient processing and interpretation of a large amount of photoresponse data. On the other hand, analog computation based on neural networks can be performed with an array of reconfigurable devices, which enables direct multiplexing of sensing and computing functions. We anticipate that these two directions will become the engineering frontier of future deep sensing research. On the scientific frontier, exploring quantum geometric and topological properties of new quantum materials in both linear and nonlinear light-matter interactions will enrich the information-encoding pathways for deep optical sensing. In addition, deep sensing schemes will continue to benefit from the latest developments in machine learning. Future highly compact, multifunctional, reconfigurable, and intelligent sensors and imagers will find applications in medical imaging, environmental monitoring, infrared astronomy, and many other areas of our daily lives, especially in the mobile domain and the internet of things. Schematic of deep optical sensing. The n -dimensional unknown information ( w ) is encoded into an m -dimensional photoresponse vector ( x ) by a reconfigurable sensor (or an array thereof), from which w′ is reconstructed by a trained neural network ( n ′ = n and w′   ≈   w ). Alternatively, x may be directly deciphered to capture certain properties of w . Here, w , x , and w′ can be regarded as points in their respective high-dimensional vector spaces ℛ n , ℛ m , and ℛ n ′ . 
    more » « less