skip to main content

Title: A novel Decoupled and stable scheme for an anisotropic phase-field dendritic crystal growth model
We consider numerical approximations for a phase-field dendritic crystal growth model, which is a highly nonlinear system that couples the anisotropic Allen–Cahn type equation and the heat equation. By combining the stabilized-Invariant Energy Quadratization method with a novel decoupling technique, the scheme requires solving only a sequence of linear elliptic equations at each time step, making it the first, to the best of the author’s knowledge, totally decoupled, linear, unconditionally energy stable scheme for the model. We further prove the unconditional energy stability rigorously and present various numerical simulations to demonstrate the stability and accuracy.
Authors:
Award ID(s):
1720212
Publication Date:
NSF-PAR ID:
10100274
Journal Name:
Applied mathematics letters
ISSN:
1873-5452
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we consider numerical approximations for a dendritic solidification phase field model with melt convection in the liquid phase, which is a highly nonlinear system that couples the anisotropic Allen-Cahn type equation, the heat equation, and the weighted Navier-Stokes equations together. We first reformulate the model into a form which is suitable for numerical approximations and establish the energy dissipative law. Then, we develop a linear, decoupled, and unconditionally energy stable numerical scheme by combining the modified projection scheme for the Navier-Stokes equations, the Invariant Energy Quadratization approach for the nonlinear anisotropic potential, and some subtle explicit-implicit treatments for nonlinear coupling terms. Stability analysis and various numerical simulations are presented.
  2. null (Ed.)
    In this paper we propose and analyze a finite difference numerical scheme for the Poisson-Nernst-Planck equation (PNP) system. To understand the energy structure of the PNP model, we make use of the Energetic Variational Approach (EnVarA), so that the PNP system could be reformulated as a non-constant mobility H − 1 H^{-1} gradient flow, with singular logarithmic energy potentials involved. To ensure the unique solvability and energy stability, the mobility function is explicitly treated, while both the logarithmic and the electric potential diffusion terms are treated implicitly, due to the convex nature of these two energy functional parts. The positivity-preserving property for both concentrations, n n and p p , is established at a theoretical level. This is based on the subtle fact that the singular nature of the logarithmic term around the value of 0 0 prevents the numerical solution reaching the singular value, so that the numerical scheme is always well-defined. In addition, an optimal rate convergence analysis is provided in this work, in which many highly non-standard estimates have to be involved, due to the nonlinear parabolic coefficients. The higher order asymptotic expansion (up to third order temporal accuracy and fourth order spatial accuracy), the rough errormore »estimate (to establish the ℓ ∞ \ell ^\infty bound for n n and p p ), and the refined error estimate have to be carried out to accomplish such a convergence result. In our knowledge, this work will be the first to combine the following three theoretical properties for a numerical scheme for the PNP system: (i) unique solvability and positivity, (ii) energy stability, and (iii) optimal rate convergence. A few numerical results are also presented in this article, which demonstrates the robustness of the proposed numerical scheme.« less
  3. In this paper, we consider the numerical approximations for a hydrodynamical model of smectic-A liquid crystals. The model, derived from the variational approach of the modified Oseen– Frank energy, is a highly nonlinear system that couples the incompressible Navier–Stokes equations and a constitutive equation for the layer variable. We develop two linear, second order time marching schemes based on the Invariant Energy Quadratization method for nonlinear terms in the constitutive equation, the projection method for the Navier–Stokes equations, and some subtle implicit-explicit treatments for the convective and stress terms. Moreover, we prove the well-posedness of the linear system and their unconditionally energy stabilities rigorously. Various numerical experiments are presented to demonstrate the stability and the accuracy of the numerical schemes in simulating the dynamics under shear flow and the magnetic field.
  4. In this paper, we consider the numerical approximation for a phase field model of the coupled two-phase free flow and two-phase porous media flow. This model consists of Cahn– Hilliard–Navier–Stokes equations in the free flow region and Cahn–Hilliard–Darcy equations in the porous media region that are coupled by seven interface conditions. The coupled system is decoupled based on the interface conditions and the solution values on the interface from the previous time step. A fully discretized scheme with finite elements for the spatial discretization is developed to solve the decoupled system. In order to deal with the difficulties arising from the interface conditions, the decoupled scheme needs to be constructed appropriately for the interface terms, and a modified discrete energy is introduced with an interface component. Furthermore, the scheme is linearized and energy stable. Hence, at each time step one need only solve a linear elliptic system for each of the two decoupled equations. Stability of the model and the proposed method is rigorously proved. Numerical experiments are presented to illustrate the features of the proposed numerical method and verify the theoretical conclusions.
  5. We construct a numerical scheme based on the scalar auxiliary variable (SAV) approach in time and the MAC discretization in space for the Cahn–Hilliard–Navier–Stokes phase- field model, prove its energy stability, and carry out error analysis for the corresponding Cahn–Hilliard–Stokes model only. The scheme is linear, second-order, unconditionally energy stable and can be implemented very efficiently. We establish second-order error estimates both in time and space for phase-field variable, chemical potential, velocity and pressure in different discrete norms for the Cahn–Hilliard–Stokes phase-field model. We also provide numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of our scheme.