skip to main content


Title: Measurement of the surface hydrophobicity of engineered nanoparticles using an atomic force microscope
Determination of the surface hydrophobicity or wettability of nanomaterials and nanoparticles (NPs) is often challenged by the heterogeneous properties of NPs that vary with particle size, shape, surface charge, aggregation states, and surface sorption or coating. This study first summarized inherent limitations of the water contact angle, octanol–water partition coefficient ( K ow ) and surface adsorption of probe molecules in probing nanomaterial hydrophobicity. Then, we demonstrated the principle of a scanning probe method based on atomic force microscopy (AFM) for the local surface hydrophobicity measurement. Specifically, we measured the adhesion forces between functionalized AFM tips and self-assembled monolayers (SAMs) to establish a linear relationship between the adhesion forces and water contact angles based on the continuum thermodynamic approach (CTA). This relationship was used to determine the local surface hydrophobicity of seven different NPs ( i.e. , TiO 2 , ZnO, SiO 2 , CuO, CeO 2 , α-Fe 2 O 3 , and Ag), which agreed well with bulk contact angles of these NPs. Some discrepancies were observed for Fe 2 O 3 , CeO 2 and SiO 2 NPs, probably because of surface hydration and roughness effects. Moreover, the solution pH and ionic strength had negligible effects on the adhesion forces between the AFM tip and MWCNTs or C 60 , indicating that the hydrophobicity of carbonaceous nanomaterials is not influenced by pH or ionic strength (IS). By contrast, natural organic matter (NOM) appreciably decreased the hydrophobicity of MWCNTs and C 60 due to surface coating of hydrophilic NOM. This scanning probe method has been proved to be reliable and robust toward the accurate measurement of the nanoscale hydrophobicity of individual NPs or nanomaterials in liquid environments.  more » « less
Award ID(s):
1756444 1235166
NSF-PAR ID:
10100822
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
20
Issue:
37
ISSN:
1463-9076
Page Range / eLocation ID:
24434 to 24443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Based on tunable properties, engineered nanoparticles (NPs) hold significant promise for water treatment technologies. Motivated by concerns regarding toxicity and non-biodegradability of some nanoparticles, we explored engineered magnetite (Fe 3 O 4 ) nanoparticles with a biocompatible coating. These were prepared with a coating of rhamnolipid, a biosurfactant primarily obtained from Pseudomonas aeruginosa . By optimizing synthesis and phase transfer conditions, particles were observed to be monodispersed and stable in water under environmentally relevant pH and ionic strength values. These materials were evaluated for U( vi ) removal from water at varying dissolved inorganic carbon and pH conditions. The rhamnolipid-coated iron oxide nanoparticles (IONPs) showed high sorption capacities at pH 6 and pH 8 in both carbonate-free systems and systems in equilibrium with atmospheric CO 2 . Equilibrium sorption behavior was interpreted using surface complexation modeling (SCM). Two models (diffuse double layer and non-electrostatic) were evaluated for their ability to account for U( vi ) binding to the carboxyl groups of the rhamnolipid coating as a function of the pH, total U( vi ) loading, and dissolved inorganic carbon concentration. The diffuse double layer model provided the best simulation of the adsorption data and was sensitive to U( vi ) loadings as it accounted for the change in the surface charge associated with U( vi ) adsorption. 
    more » « less
  2. Abstract

    The in‐plane packing of gold (Au), polystyrene (PS), and silica (SiO2) spherical nanoparticle (NP) mixtures at a water–oil interface is investigated in situ by UV–vis reflection spectroscopy. All NPs are functionalized with carboxylic acid such that they strongly interact with amine‐functionalized ligands dissolved in an immiscible oil phase at the fluid interface. This interaction markedly increases the binding energy of these nanoparticle surfactants (NPSs). The separation distance between the Au NPSs and Au surface coverage are measured by the maximum plasmonic wavelength (λmax) and integrated intensities as the assemblies saturate for different concentrations of non‐plasmonic (PS/SiO2) NPs. As the PS/SiO2content increases, the time to reach intimate Au NP contact also increases, resulting from their hindered mobility. λmaxchanges within the first few minutes of adsorption due to weak attractive inter‐NP forces. Additionally, a sharper peak in the reflection spectrum at NP saturation reveals tighter Au NP packing for assemblies with intermediate non‐plasmonic NP content. Grazing incidence small angle X‐ray scattering (GISAXS) and scanning electron microscopy (SEM) measurements confirm a decrease in Au NP domain size for mixtures with larger non‐plasmonic NP content. The results demonstrate a simple means to probe interfacial phase separation behavior using in situ spectroscopy as interfacial structures densify into jammed, phase‐separated NP films.

     
    more » « less
  3. Abstract

    Most small asteroids are defined as “rubble piles” or bodies with zero tensile strength and large bulk porosity. The cohesive forces that hold them together act at the grain scale, and their magnitude is often estimated from similar materials when used in simulations. Improving the accuracy of predictions of asteroid strengths requires suitable laboratory measurements of relevant materials, as well as increasing the availability of materials from sample return. Atomic force microscopy (AFM) is well suited for force measurements relative to particle–particle interactions. In this work, we use AFM force measurements to evaluate the cohesive forces that act between micron-sized grains. We investigate the effect of the sizes of the interacting grains of JSC-1 lunar simulant using three sample sizes (<45, 75–125, and 125–250μm) and three spherical AFM tip diameters (2μm, 15μm, and 45μm). In all cases, adhesion forces were larger at ambient relative humidity (RH), where the water layer on the surface of the grains is more prominent, creating a larger meniscus between the tip and the grain upon contact. We observed weaker adhesion with larger grain/tip size, which can be attributed to the changing contact area between the samples and the tips. We expect that our approach will pave the way to a better understanding of regolith surface properties such as adhesion and cohesion and provide suitable input for models that can be used to predict the evolution of asteroids and their particle behaviors.

     
    more » « less
  4. To unravel fouling and defouling mechanisms of protein, saccharides and natural organic matters (NOM) on polymeric membrane during filtration, this study investigated filtration characteristics on polyvinyl chloride (PVC) ultrafiltration membranes with bovine serum albumin, dextran, humic acid as model foulants. Membrane fouling and defouling performances were analyzed through monitoring the flux decline during filtration and flux recovery during physical backwash. Physico-chemical properties (e.g., hydrophobicity and surface charge) of PVC membrane and foulants were characterized, which were used in the extended Derjaguin–Landau–Verwey–Overbeek (EDLVO) theory to calculate the interaction energies between membrane foulant and foulant-foulant. The results showed that at the later filtration stages the fouling rate was strongly correlated with the deposition rate, which was determined by the interaction energy profile calculated by EDLVO. Moreover, the adhesion forces of membrane–foulant and foulant–foulant were further measured by atomic force microscopy (AFM) with modified colloidal probes. A positive correlation (R2 =0.845) between particle detachment rate (determined by adhesion force) and defouling rate was developed for BSA and HA foulants that led to cake layer formation. By contrast, dextran defouling rate was off this correlation as dextran partially clogged membrane pores due to its smaller size. 
    more » « less
  5. Abstract

    The pathogenicity and antimicrobial properties of engineered nanomaterials (ENMs) are relatively well studied. However, less is known regarding the interactions of ENMs and agriculturally beneficial microorganisms that affect food security. Nanoceria (CeO2nanoparticles (NPs)), multiwall carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs), and carbon black (CB) have been previously shown to inhibit symbiotic N2fixation in soybeans, but direct rhizobial susceptibility is uncertain. Here,Bradyrhizobium diazoefficiensassociated with symbiotic N2fixation in soybeans is assessed, evaluating the role of soybean root exudates (RE) on ENM–bacterial interactions and the effects of CeO2NPs, MWCNTs, GNPs, and CB on bacterial growth and gene expression. Although bacterial growth is inhibited by 50 mg L−1CeO2NPs, MWCNTs, and CB, all ENMs at 0.1 and 10 mg L−1cause a global transcriptomic response that is mitigated by RE. ENMs may interfere with plant‐bacterial signaling, as evidenced by suppressed upregulation of genes induced by RE, and downregulation of genes encoding transport RNA, which facilitates nodulation signaling. MWCNTs and CeO2NPs inhibit the expression of genes conferringB. diazoefficiensnodulation competitiveness. Surprisingly, the transcriptomic effects onB. diazoefficiensare similar for these two ENMs, indicating that physical, not chemical, ENM properties explain the observed effects.

     
    more » « less