The pathogenicity and antimicrobial properties of engineered nanomaterials (ENMs) are relatively well studied. However, less is known regarding the interactions of ENMs and agriculturally beneficial microorganisms that affect food security. Nanoceria (CeO2nanoparticles (NPs)), multiwall carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs), and carbon black (CB) have been previously shown to inhibit symbiotic N2fixation in soybeans, but direct rhizobial susceptibility is uncertain. Here,
- PAR ID:
- 10100822
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 20
- Issue:
- 37
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 24434 to 24443
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Bradyrhizobium diazoefficiens associated with symbiotic N2fixation in soybeans is assessed, evaluating the role of soybean root exudates (RE) on ENM–bacterial interactions and the effects of CeO2NPs, MWCNTs, GNPs, and CB on bacterial growth and gene expression. Although bacterial growth is inhibited by 50 mg L−1CeO2NPs, MWCNTs, and CB, all ENMs at 0.1 and 10 mg L−1cause a global transcriptomic response that is mitigated by RE. ENMs may interfere with plant‐bacterial signaling, as evidenced by suppressed upregulation of genes induced by RE, and downregulation of genes encoding transport RNA, which facilitates nodulation signaling. MWCNTs and CeO2NPs inhibit the expression of genes conferringB. diazoefficiens nodulation competitiveness. Surprisingly, the transcriptomic effects onB. diazoefficiens are similar for these two ENMs, indicating that physical, not chemical, ENM properties explain the observed effects. -
Based on tunable properties, engineered nanoparticles (NPs) hold significant promise for water treatment technologies. Motivated by concerns regarding toxicity and non-biodegradability of some nanoparticles, we explored engineered magnetite (Fe 3 O 4 ) nanoparticles with a biocompatible coating. These were prepared with a coating of rhamnolipid, a biosurfactant primarily obtained from Pseudomonas aeruginosa . By optimizing synthesis and phase transfer conditions, particles were observed to be monodispersed and stable in water under environmentally relevant pH and ionic strength values. These materials were evaluated for U( vi ) removal from water at varying dissolved inorganic carbon and pH conditions. The rhamnolipid-coated iron oxide nanoparticles (IONPs) showed high sorption capacities at pH 6 and pH 8 in both carbonate-free systems and systems in equilibrium with atmospheric CO 2 . Equilibrium sorption behavior was interpreted using surface complexation modeling (SCM). Two models (diffuse double layer and non-electrostatic) were evaluated for their ability to account for U( vi ) binding to the carboxyl groups of the rhamnolipid coating as a function of the pH, total U( vi ) loading, and dissolved inorganic carbon concentration. The diffuse double layer model provided the best simulation of the adsorption data and was sensitive to U( vi ) loadings as it accounted for the change in the surface charge associated with U( vi ) adsorption.more » « less
-
Abstract The in‐plane packing of gold (Au), polystyrene (PS), and silica (SiO2) spherical nanoparticle (NP) mixtures at a water–oil interface is investigated in situ by UV–vis reflection spectroscopy. All NPs are functionalized with carboxylic acid such that they strongly interact with amine‐functionalized ligands dissolved in an immiscible oil phase at the fluid interface. This interaction markedly increases the binding energy of these nanoparticle surfactants (NPSs). The separation distance between the Au NPSs and Au surface coverage are measured by the maximum plasmonic wavelength (λmax) and integrated intensities as the assemblies saturate for different concentrations of non‐plasmonic (PS/SiO2) NPs. As the PS/SiO2content increases, the time to reach intimate Au NP contact also increases, resulting from their hindered mobility. λmaxchanges within the first few minutes of adsorption due to weak attractive inter‐NP forces. Additionally, a sharper peak in the reflection spectrum at NP saturation reveals tighter Au NP packing for assemblies with intermediate non‐plasmonic NP content. Grazing incidence small angle X‐ray scattering (GISAXS) and scanning electron microscopy (SEM) measurements confirm a decrease in Au NP domain size for mixtures with larger non‐plasmonic NP content. The results demonstrate a simple means to probe interfacial phase separation behavior using in situ spectroscopy as interfacial structures densify into jammed, phase‐separated NP films.
-
In this study, hydrophilic silica nanoparticles (Si NPs) were used to modify α-alumina tubular membranes to improve their performance in terms of flux, oil rejection, and anti-fouling properties. Our work focuses on enhancing membrane performance, particularly for difficult applications such as produced water treatment. The prepared membranes were applied for oil-in-water emulsion treatment. After coating hydrophilic Si NPs, the oil contact angle improved from 133.8° to 171.4°. To prevent Si NPs from leaching off the surface of α-alumina tubular membranes, polyvinyl alcohol was used to coat the membranes as a pre-treatment step before Si NP modification. After coating the membrane with Si NPs, the roughness of the membrane surface decreased, likely leading to less fouling. After coating Si NPs, Total Organic Carbon rejection increased from 93.1% for pristine α-alumina tubular membranes to 97.7% for silica-modified membranes because of hydrophilic improvements of the modified membranes. The Si NP coating improved the anti-fouling property of membranes with the flux recovery ratio increasing from 71.3% for pristine α-alumina tubular membranes to 85.9% for silica-modified membranes. Scanning Electron Microscopy, Energy- dispersive X-ray spectroscopy, oil contact angle, and Atomic Force Microscopy characterization tests were done. The tests showed successful Si NPs impregnation and altered wettability.more » « less
-
Hydrophobic surfaces provide special characteristics for biomedical applications ranging from tunable protein adsorption, cellular interactions, and hemocompatibility to antibacterial coatings. In this research, we biomimic the hair-like micro-whisker structures of magnolia leaf using a synthetic polymeric formulation. Optical and scanning electron microscopy images revealed the presence of micro-whiskers resulting in higher water contact angles. The top layer of the magnolia leaf had a contact angle of 50º as compared to the hydrophobic bottom layer at 98º. A synthetic polymeric formulation was coated on different materials to study its effect on hydrophobicity. The coating was replicated (n=3) on each of the materials used such as glass, polymer, fabric, wood, and stainless steel. A surface tensiometer was used to measure the transition from hydrophilic to hydrophobic interactions between water and the substrate materials. Contact angle measurements revealed an increase in hydrophobicity for all the materials from their original uncoated surface. Glass displayed the highest increase in contact angle from 37º to 90º. Phase analysis of the coated region was performed to characterize the surface exposure of glass substrate to the synthetic polymeric formulation. An increase in the coated region showed a significant increase in contact angle from 50º to 95º. This research lays the foundation to develop and understand hydrophobic coatings for several biomedical applications including non-fouling implant surfaces, lab-on-chip devices, and other diagnostic tools.more » « less