skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrogen peroxide production via a redox reaction of N , N ′-dimethyl-2,6-diaza-9,10-anthraquinonediium by addition of bisulfite
We demonstrate that bisulfite can be used for reduction of a highly electrophilic anthraquinone derivative, N,N ′-dimethyl-2,6-diaza-9,10-anthraquinonediium (DAAQ), and subsequent autoxidation generates an equivalent of hydrogen peroxide. The mechanism for DAAQ reduction by bisulfite, DAAQ electrochemistry, and use of a simple test strip assay for H 2 O 2 , are described.  more » « less
Award ID(s):
1665040
PAR ID:
10100852
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
54
Issue:
79
ISSN:
1359-7345
Page Range / eLocation ID:
11204 to 11207
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Chemical reduction of several cycloparaphenylenes (CPPs) ranging in size from [8]CPP to [12]CPP has been investigated with potassium metal in THF. The X-ray diffraction characterization of the resulting doubly-reduced [ n ]CPPs provided a unique series of carbon nanohoops with increasing dimensions and core flexibility for the first comprehensive structural analysis. The consequences of electron acquisition by a [ n ]CPP core have been analyzed in comparison with the neutral parents. The addition of two electrons to the cyclic carbon framework of [ n ]CPPs leads to the characteristic elliptic core distortion and facilitates the internal encapsulation of sizable cationic guests. Molecular and solid-state structure changes, alkali metal binding and unique size-dependent host abilities of the [ n ]CPP 2− series with n = 6–12 are discussed. This in-depth analysis opens new perspectives in supramolecular chemistry of [ n ]CPPs and promotes their applications in size-selective guest encapsulation and chemical separation. 
    more » « less
  2. The use of hydrazones as a new type of submonomer in peptoid synthesis is described, giving access to peptoid monomers that are structure-inducing. A wide range of hydrazones were found to readily react with α-bromoamides in routine solid phase peptoid submonomer synthesis. Conditions to promote a one-pot cleavage of the peptoid from the resin and reduction to the corresponding N -alkylamino side chains were also identified, and both the N -imino- and N -alkylamino glycine residues were found to favor the trans -amide bond geometry by NMR, X-ray crystallography, and computational analyses. 
    more » « less
  3. Abstract We describe convenient preparations ofN,N′‐dialkyl‐1,3‐propanedialdiminium chlorides,N,N′‐dialkyl‐1,3‐propanedialdimines, and lithiumN,N′‐dialkyl‐1,3‐propanedialdiminates in which the alkyl groups are methyl, ethyl, isopropyl, ortert‐butyl. For the dialdiminium salts, the N2C3backbone is always in thetrans‐s‐transconfiguration. Three isomers are present in solution except for thetert‐butyl compound, for which only two isomers are present; increasing the steric bulk of theN‐alkyl substituents shifts the equilibrium away from the (Z,Z) isomer in favor of the (E,Z), and (E,E) isomers. For the neutral dialdimines, crystal structures show that the methyl and isopropyl compounds adopt the (E,Z) form, whereas thetert‐butyl compound is in the (E,E) form. In aprotic solvents all four dialdimines (as well as the lithium dialdiminate salts) adoptcis‐s‐cisconformations in which there presumably is either an intramolecular hydrogen bond (or a lithium cation) between the two nitrogen atoms. 
    more » « less
  4. The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′ 3 Ln compounds. 
    more » « less
  5. Six N^C^N cyclometalated Ni(II) complexes [Ni(N^C^N)Cl] or [Ni(N^C^N’)Br] with symmetric N^C^N or non-symmetric N^C^N’ ligands in which the peripheral N-groups were varied with pyridine (Py), 4-thiazole (4Tz), 2-thiazole (2Tz), and 2-benzothiazole (2Btz) complementing the previously reported complexes with di(2-pyridyl)phenide ligands [Ni(Py(Ph)Py)X] X = Cl or Br. The non-symmetric [Ni(N^C^N’)Br] complexes were synthesized from NiBr2 and N^CH^N’ protoligands through base-assisted nickelation, while the symmetric [Ni(N^C^N)Cl] complexes were received from the N^C(Cl)^N protoligands and [Ni(COD)2] (COD = 1,5-cyclooctadiene). Introduction of 4Tz on both sides shifted the electrochemical gap ΔEexp = Eox–Ered and the long wavelength UV-vis absorption maxima of the complexes to higher energies, while 2Tz leads to a shift to lower energies. When introducing only one 4Tz or 2Tz as peripheral groups, the remaining PhPy moiety dominates the electronic properties and electrochemistry and photophysics are very similar to the Py(Ph)Py derivatives. In contrast to this, introduction of 2Btz shifts both values to lower energies, regardless of one or two 2Btz groups and the 2Btz moiety dominates the character of the frontier molecular orbitals of the complexes, as DFT calculations show. Long-wavelength UV-vis absorptions vary from 416 to 443 nm, and their energies correlate well with the first reduction potentials. Negishi-type C–C cross-coupling reactions gave total yields ranging from 1 to 60% and cross-coupling yields from 1 to 44%. The reactivities correlate roughly with the first reduction potentials. Facilitated reduction (E around –2 or higher) goes generally along with improved performance, making the thiazole-containing complexes interesting candidates for such catalysis. 
    more » « less