In this paper, we present a new computational pipeline for designing and fabricating 4D garments as knitwear that considers comfort during body movement. This is achieved by careful control of elasticity distribution to reduce uncomfortable pressure and unwanted sliding caused by body motion. We exploit the ability to knit patterns in different elastic levels by single-jersey jacquard (SJJ) with two yarns. We design the distribution of elasticity for a garment by physics-based computation, the optimized elasticity on the garment is then converted into instructions for a digital knitting machine by two algorithms proposed in this paper. Specifically, a graph-based algorithm is proposed to generate knittable stitch meshes that can accurately capture the 3D shape of a garment, and a tiling algorithm is employed to assign SJJ patterns on the stitch mesh to realize the designed distribution of elasticity. The effectiveness of our approach is verified on simulation results and on specimens physically fabricated by knitting machines.
more »
« less
This content will become publicly available on August 1, 2026
Dress-1-to-3: Single Image to Simulation-Ready 3D Outfit with Diffusion Prior and Differentiable Physics
Recent advances in large models have significantly advanced image-to-3D reconstruction. However, the generated models are often fused into a single piece, limiting their applicability in downstream tasks. This paper focuses on 3D garment generation, a key area for applications like virtual try-on with dynamic garment animations, which require garments to be separable and simulation-ready. We introduce Dress-1-to-3, a novel pipeline that reconstructs physics-plausible, simulation-ready separated garments with sewing patterns and humans from an in-the-wild image. Starting with the image, our approach combines a pre-trained image-to-sewing pattern generation model for creating coarse sewing patterns with a pre-trained multi-view diffusion model to produce multi-view images. The sewing pattern is further refined using a differentiable garment simulator based on the generated multi-view images. Versatile experiments demonstrate that our optimization approach substantially enhances the geometric alignment of the reconstructed 3D garments and humans with the input image. Furthermore, by integrating a texture generation module and a human motion generation module, we produce customized physics-plausible and realistic dynamic garment demonstrations. Our project page is https://dress-1-to-3.github.io/.
more »
« less
- PAR ID:
- 10651193
- Publisher / Repository:
- SIGGRAPH 2025
- Date Published:
- Journal Name:
- ACM Transactions on Graphics
- Volume:
- 44
- Issue:
- 4
- ISSN:
- 0730-0301
- Page Range / eLocation ID:
- 1 to 16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With the ever-increasing amount of 3D data being captured and processed, multi-view image compression is essential to various applications, including virtual reality and 3D modeling. Despite the considerable success of learning-based compression models on single images, limited progress has been made in multi-view image compression. In this paper, we propose an efficient approach to multi-view image compression by leveraging the redundant information across different viewpoints without explicitly using warping operations or camera parameters. Our method builds upon the recent advancements in Multi-Reference Entropy Models (MEM), which were initially proposed to capture correlations within an image. We extend the MEM models to employ cross-view correlations in addition to within-image correlations. Specifically, we generate latent representations for each view independently and integrate a cross-view context module within the entropy model. The estimation of entropy parameters for each view follows an autoregressive technique, leveraging correlations with the previous views. We show that adding this view context module further enhances the compression performance when jointly trained with the autoencoder. Experimental results demonstrate superior performance compared to both traditional and learning-based multi-view compression methods.more » « less
-
Many medical conditions, including sensory processing disorder (SPD), employ compression therapy as a form of treatment. SPD patients often wear weighted or elastic vests to produce compression on the body, which have been shown to have a calming effect on the wearer. Recent advances in compression garment technology incorporate active materials to produce dynamic, low bulk compression garments that can be remotely controlled. In this study, an active compression vest using shape memory alloy (SMA) spring actuators was developed to produce up to 52.5 mmHg compression on a child's torso for SPD applications. The vest prototype incorporated 16 SMA spring actuators (1.25 mm diameter, spring index = 3) that constrict when heated, producing large forces and displacements that can be controlled via an applied current. When power was applied (up to 43.8 W), the prototype vest generated increasing magnitudes of pressure (up to 37.6 mmHg, spatially averaged across the front of the torso) on a representative child-sized form. The average pressure generated was measured up to 71.6% of the modeled pressure, and spatial pressure nonuniformities were observed that can be traced to specific garment architectural features. Although there is no consistent standard in magnitude or distribution of applied force in compression therapy garments, it is clear from comparative benchmarks that the compression produced by this garment exceeds the demands of the target application. This study demonstrates the viability of SMA-based compression garments as an enabling technology for enhancing SPD (and other compression-based) treatment.more » « less
-
Synthetic data is highly useful for training machine learning systems performing image-based 3D reconstruction, as synthetic data has applications in both extending existing generalizable datasets and being tailored to train neural networks for specific learning tasks of interest. In this paper, we introduce and utilize a synthetic data generation suite capable of generating data given existing 3D scene models as input. Specifically, we use our tool to generate image sequences for use with Multi-View Stereo (MVS), moving a camera through the virtual space according to user-chosen camera parameters. We evaluate how the given camera parameters and type of 3D environment affect how applicable the generated image sequences are to the MVS task using five pre-trained neural networks on image sequences generated from three different 3D scene datasets. We obtain generated predictions for each combination of parameter value and input image sequence, using standard error metrics to analyze the differences in depth predictions on image sequences across 3D datasets, parameters, and networks. Among other results, we find that camera height and vertical camera viewing angle are the parameters that cause the most variation in depth prediction errors on these image sequences.more » « less
-
The deep neural networks used in modern computer vision systems require enormous image datasets to train them. These carefully-curated datasets typically have a million or more images, across a thousand or more distinct categories. The process of creating and curating such a dataset is a monumental undertaking, demanding extensive effort and labelling expense and necessitating careful navigation of technical and social issues such as label accuracy, copyright ownership, and content bias.What if we had a way to harness the power of large image datasets but with few or none of the major issues and concerns currently faced? This paper extends the recent work of Kataoka et al. [15], proposing an improved pre-training dataset based on dynamically-generated fractal images. Challenging issues with large-scale image datasets become points of elegance for fractal pre-training: perfect label accuracy at zero cost; no need to store/transmit large image archives; no privacy/demographic bias/concerns of inappropriate content, as no humans are pictured; limitless supply and diversity of images; and the images are free/open-source. Perhaps surprisingly, avoiding these difficulties imposes only a small penalty in performance. Leveraging a newly-proposed pre-training task—multi-instance prediction—our experiments demonstrate that fine-tuning a network pre-trained using fractals attains 92.7-98.1% of the accuracy of an ImageNet pre-trained network. Our code is publicly available. 1more » « less
An official website of the United States government
