skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nanonetworks in Biomedical Applications
By interconnecting nanomachines and forming nanonetworks, the capacities of singlenanomachines are expected to be enhanced, as the ensuing information exchange will allow themto cooperate towards a common goal. Nowadays, systems normally use electromagnetic signals toencode, send and receive information, however, in a novel communication paradigm, moleculartransceivers, channel models or protocols use molecules. This article presents the current developmentsin nanomachines along with their future architecture to better understand nanonetworkscenarios in biomedical applications. Furthermore, to highlight the communication needs betweennanomachines, two applications for nanonetworks are also presented: i) a new networking paradigm,called the Internet of NanoThings, that allows nanoscale devices to interconnect with existingcommunication networks, and ii) Molecular Communication, where the propagation of chemicalcompounds like drug particles, carry out the information exchange.  more » « less
Award ID(s):
1706050 1718177 1816969
PAR ID:
10101417
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Current Drug Targets
Volume:
20
Issue:
8
ISSN:
1389-4501
Page Range / eLocation ID:
800 to 807
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent progress in artificial nanomachines offers promising solutions to grand challenges in biochemical delivery and diagnostics. In this work, advances of micro/nanomachines made of synthesized micro/nanostructures for applications in delivery and detection of biomolecules are reviewed, along with a discussion of pros and cons of each type of machine. The review of micro/nanomachines is categorized according to their working mechanisms, including motion actuation realized by magnetic, electric, and acoustic fields and chemical reactions. The developments of micro/nanomachines are discussed in depth in the fabrication, propulsion, and motion control, loading and releasing of micro/nanosubstances, and biochemical sensing. The rapid development of man‐made miniaturized machines paves the road toward future intelligent nanorobots and nanofactories that can revolutionize society. 
    more » « less
  2. Generalized canonical correlation analysis (GCCA) aims to learn common low-dimensional representations from multiple "views" of the data (e.g., audio and video of the same event). In the era of big data, GCCA computation encounters many new challenges. In particular, distributed optimization for GCCA—which is well-motivated in applications like internet of things and parallel computing—may incur prohibitively high communication costs. To address this challenge, this work proposes a communication-efficient distributed GCCA algorithm under the popular MAX-VAR GCCA paradigm. A quantization strategy for information exchange among the computing agents is employed in the proposed algorithm. It is observed that our design, leveraging the idea of error feedback-based quantization, can reduce communication cost by at least 90% while maintaining essentially the same GCCA performance as the unquantized version. Furthermore, the proposed method is guar-anteed to converge to a neighborhood of the optimal solution in a geometric rate—even under aggressive quantization. The effectiveness of our method is demonstrated using both synthetic and real data experiments. 
    more » « less
  3. Wireless communication over long distances has become the bottleneck for battery-powered, large-scale deployments. Low-power protocols like Zigbee and Bluetooth Low Energy have limited communication range, whereas long-range communication strategies like cellular and satellite networks are power-hungry. Technologies that use narrow-band communication like LoRa, SigFox, and NB-IoT have low spectral efficiency, leading to scalability issues. The goal of this work is to develop a communication framework that is energy efficient, long-range, and scalable. We propose, design, and prototype WiChronos, a communication paradigm that encodes information in the time interval between two narrowband symbols to drastically reduce the energy consumption in a wide area network with large number of senders. We leverage the low data-rate and relaxed latency requirements of such applications to achieve the desired features identified above. We design and implement chirp spread spectrum transmitter and receiver using off-the-shelf components to send the narrowband symbols. Based on our prototype, WiChronos achieves an impressive 60% improvement in battery life compared to state-of-the-art LPWAN technologies in transmission of payloads less than 10 bytes at experimentally verified distances of over 4 km. We also show that more than 1,000 WiChronos senders can co-exist with less than 5% collision probability under low traffic conditions. 
    more » « less
  4. null (Ed.)
    Abstract The transfer of information between quantum systems is essential for quantum communication and computation. In quantum computers, high connectivity between qubits can improve the efficiency of algorithms, assist in error correction, and enable high-fidelity readout. However, as with all quantum gates, operations to transfer information between qubits can suffer from errors associated with spurious interactions and disorder between qubits, among other things. Here, we harness interactions and disorder between qubits to improve a swap operation for spin eigenstates in semiconductor gate-defined quantum-dot spins. We use a system of four electron spins, which we configure as two exchange-coupled singlet–triplet qubits. Our approach, which relies on the physics underlying discrete time crystals, enhances the quality factor of spin-eigenstate swaps by up to an order of magnitude. Our results show how interactions and disorder in multi-qubit systems can stabilize non-trivial quantum operations and suggest potential uses for non-equilibrium quantum phenomena, like time crystals, in quantum information processing applications. Our results also confirm the long-predicted emergence of effective Ising interactions between exchange-coupled singlet–triplet qubits. 
    more » « less
  5. null (Ed.)
    Abstract Natural nanomechanisms such as capillaries, neurotransmitters, and ion channels play a vital role in the living systems. But the design principles developed by nature through evolution are not well understood and, hence, not applicable to engineered nanomachines. Thus, the design of nanoscale mechanisms with prescribed functions remains a challenge. Here, we present a systematic approach based on established kinematics techniques to designing, analyzing, and controlling manufacturable nanomachines with prescribed mobility and function built from a finite but extendable number of available “molecular primitives.” Our framework allows the systematic exploration of the design space of irreducibly simple nanomachines, built with prescribed motion specification by combining available nanocomponents into systems having constrained, and consequently controllable motions. We show that the proposed framework has allowed us to discover and verify a molecule in the form of a seven link, seven revolute (7R) closed-loop spatial linkage with mobility (degree-of-freedom (DOF)) of one. Furthermore, our experiments exhibit the type and range of motion predicted by our simulations. Enhancing such a structure into functional nanomechanisms by exploiting and controlling their motions individually or as part of an ensemble could galvanize development of the multitude of engineering, scientific, medical, and consumer applications that can benefit from engineered nanomachines. 
    more » « less