skip to main content

Title: Low-Energy Acceleration of Binarized Convolutional Neural Networks using a Spin Hall Effect based Logic-in-Memory Architecture
Logic-in-Memory (LIM) architectures offer potential approaches to attaining such throughput goals within area and energy constraints starting with the lowest layers of the hardware stack. In this paper, we develop a Spintronic Logic-in-Memory (S-LIM) XNOR neural network (S-LIM XNN) which can perform binary convolution with reconfigurable in-memory logic without supplementing distinct logic circuits for computation within the memory module itself. Results indicate that the proposed S-LIM XNN designs achieve 1.2-fold energy reduction, 1.26-fold throughput increase, and 1.4-fold accuracy improvement compared to the state-of-the-art binarized convolutional neural network hardware. Design considerations, architectural approaches, and the impact of process variation on the proposed hybrid spin-CMOS design are identified and assessed, including comparisons and recommendations for future directions with respect to LIM approaches for neuromorphic computing.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Emerging Topics in Computing
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Channel decoders are key computing modules in wired/wireless communication systems. Recently neural network (NN)-based decoders have shown their promising error-correcting performance because of their end-to-end learning capability. However, compared with the traditional approaches, the emerging neural belief propagation (NBP) solution suffers higher storage and computational complexity, limiting its hardware performance. To address this challenge and develop a channel decoder that can achieve high decoding performance and hardware performance simultaneously, in this paper we take a first step towards exploring SRAM-based in-memory computing for efficient NBP channel decoding. We first analyze the unique sparsity pattern in the NBP processing, and then propose an efficient and fully Digital Sparse In-Memory Matrix vector Multiplier (DSPIMM) computing platform. Extensive experiments demonstrate that our proposed DSPIMM achieves significantly higher energy efficiency and throughput than the state-of-the-art counterparts. 
    more » « less
  2. In this paper, we propose MRIMA, as a novel MRAM-based In-Memory Accelerator for non-volatile, flexible, and efficient in-memory computing. MRIMA transforms current Spin Transfer Torque Magnetic Random Access Memory (STT-MRAM) arrays to massively parallel computational units capable of working as both non-volatile memory and in-memory logic. Instead of integrating complex logic units in cost-sensitive memory, MRIMA exploits hardware-friendly bit-line computing methods to implement complete Boolean logic functions between operands within a memory array in a single clock cycle, overcoming the multi-cycle logic issue in contemporary Processing-In-Memory (PIM) platforms. We present practical case studies to demonstrate MRIMA’s acceleration for binary-weight and low bit-width Convolutional Neural Networks (CNN) as well as data encryption. Our device-to-architecture co-simulation results on CNN acceleration demonstrate that MRIMA can obtain 1.7× better energy-efficiency and 11.2× speed-up compared to ASICs, and, 1.8× better energy-efficiency and 2.4× speed-up over the best DRAM-based PIM solutions. As an AES in-memory encryption engine, MRIMA shows 77% and 21% lower energy consumption compared to CMOS-ASIC and recent domain wall-based design, respectively. 
    more » « less
  3. Convolutional neural network (CNN)-based object detection has achieved very high accuracy; e.g., single-shot multi-box detectors (SSDs) can efficiently detect and localize various objects in an input image. However, they require a high amount of computation and memory storage, which makes it difficult to perform efficient inference on resource-constrained hardware devices such as drones or unmanned aerial vehicles (UAVs). Drone/UAV detection is an important task for applications including surveillance, defense, and multi-drone self-localization and formation control. In this article, we designed and co-optimized an algorithm and hardware for energy-efficient drone detection on resource-constrained FPGA devices. We trained an SSD object detection algorithm with a custom drone dataset. For inference, we employed low-precision quantization and adapted the width of the SSD CNN model. To improve throughput, we use dual-data rate operations for DSPs to effectively double the throughput with limited DSP counts. For different SSD algorithm models, we analyze accuracy or mean average precision (mAP) and evaluate the corresponding FPGA hardware utilization, DRAM communication, and throughput optimization. We evaluated the FPGA hardware for a custom drone dataset, Pascal VOC, and COCO2017. Our proposed design achieves a high mAP of 88.42% on the multi-drone dataset, with a high energy efficiency of 79 GOPS/W and throughput of 158 GOPS using the Xilinx Zynq ZU3EG FPGA device on the Open Vision Computer version 3 (OVC3) platform. Our design achieves 1.1 to 8.7× higher energy efficiency than prior works that used the same Pascal VOC dataset, using the same FPGA device, but at a low-power consumption of 2.54 W. For the COCO dataset, our MobileNet-V1 implementation achieved an mAP of 16.8, and 4.9 FPS/W for energy-efficiency, which is ∼ 1.9× higher than prior FPGA works or other commercial hardware platforms.

    more » « less
  4. In this paper, we explore potentials of leveraging spin-based in-memory computing platform as an accelerator for Binary Convolutional Neural Networks (BCNN). Such platform can implement the dominant convolution computation based on presented Spin Orbit Torque Magnetic Random Access Memory (SOT-MRAM) array. The proposed array architecture could simultaneously work as non-volatile memory and a reconfigurable in-memory logic (AND, OR) without add-on logic circuits to memory chip as in conventional logic-in-memory designs. The computed logic output could be also simply read out like a normal MRAM bit-cell using the shared memory peripheral circuits. We employ such intrinsic in-memory computing architecture to efficiently process data within memory to greatly reduce power hungry and omit long distance data communication concerning state-of-the-art BCNN hardware. 
    more » « less
  5. Graph Convolutional Networks (GCNs) have successfully incorporated deep learning to graph structures for social network analysis, bio-informatics, etc. The execution pattern of GCNs is a hybrid of graph processing and neural networks which poses unique and significant challenges for hardware implementation. Graph processing involves a large amount of irregular memory access with little computation whereas processing of neural networks involves a large number of operations with regular memory access. Existing graph processing and neural network accelerators are therefore inefficient for computing GCNs. This paper presents Parag, processing in memory (PIM) architecture for GCN computation. It consists of customized logic with minuscule computing units called Neural Processing Elements (NPEs) interfaced to each bank of the DRAM to support parallel graph processing and neural network computation. It utilizes the massive internal parallelism of DRAM to accelerate the GCN execution with high energy efficiency. Simulation results for inference of GCN over standard datasets show a latency and energy reduction by three orders of magnitude over a CPU implementation. When compared to a state-of-the-art PIM architecture, PARAG achieves on an average 4x reduction in latency and 4.23x reduction in the energy-delay-product (EDP). 
    more » « less