skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Schur Complement Cheeger Inequality
Cheeger's inequality shows that any undirected graph G with minimum normalized Laplacian eigenvalue lambda_G has a cut with conductance at most O(sqrt{lambda_G}). Qualitatively, Cheeger's inequality says that if the mixing time of a graph is high, there is a cut that certifies this. However, this relationship is not tight, as some graphs (like cycles) do not have cuts with conductance o(sqrt{lambda_G}). To better approximate the mixing time of a graph, we consider a more general object. Specifically, instead of bounding the mixing time with cuts, we bound it with cuts in graphs obtained by Schur complementing out vertices from the graph G. Combinatorially, these Schur complements describe random walks in G restricted to a subset of its vertices. As a result, all Schur complement cuts have conductance at least Omega(lambda_G). We show that unlike with cuts, this inequality is tight up to a constant factor. Specifically, there is a Schur complement cut with conductance at most O(lambda_G).  more » « less
Award ID(s):
1816861
PAR ID:
10104029
Author(s) / Creator(s):
Date Published:
Journal Name:
10th Innovations in Theoretical Computer Science Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We consider the classical Minimum Balanced Cut problem: given a graph $$G$$, compute a partition of its vertices into two subsets of roughly equal volume, while minimizing the number of edges connecting the subsets. We present the first {\em deterministic, almost-linear time} approximation algorithm for this problem. Specifically, our algorithm, given an $$n$$-vertex $$m$$-edge graph $$G$$ and any parameter $$1\leq r\leq O(\log n)$$, computes a $$(\log m)^{r^2}$$-approximation for Minimum Balanced Cut on $$G$$, in time $$O\left ( m^{1+O(1/r)+o(1)}\cdot (\log m)^{O(r^2)}\right )$$. In particular, we obtain a $$(\log m)^{1/\epsilon}$$-approximation in time $$m^{1+O(1/\sqrt{\epsilon})}$$ for any constant $$\epsilon$$, and a $$(\log m)^{f(m)}$$-approximation in time $$m^{1+o(1)}$$, for any slowly growing function $$m$$. We obtain deterministic algorithms with similar guarantees for the Sparsest Cut and the Lowest-Conductance Cut problems. Our algorithm for the Minimum Balanced Cut problem in fact provides a stronger guarantee: it either returns a balanced cut whose value is close to a given target value, or it certifies that such a cut does not exist by exhibiting a large subgraph of $$G$$ that has high conductance. We use this algorithm to obtain deterministic algorithms for dynamic connectivity and minimum spanning forest, whose worst-case update time on an $$n$$-vertex graph is $$n^{o(1)}$$, thus resolving a major open problem in the area of dynamic graph algorithms. Our work also implies deterministic algorithms for a host of additional problems, whose time complexities match, up to subpolynomial in $$n$$ factors, those of known randomized algorithms. The implications include almost-linear time deterministic algorithms for solving Laplacian systems and for approximating maximum flows in undirected graphs. 
    more » « less
  2. We consider arbitrary graphs $$G$$ with $$n$$ vertices and minimum degree at least $$\delta n$$ where $$\delta>0$$ is constant.\\ (a) If the conductance of $$G$$ is sufficiently large then we obtain an asymptotic expression for the cover time $$C_G$$ of $$G$$ as the solution to an explicit transcendental equation.\\ (b) If the conductance is not large enough to apply (a), but the mixing time of a random walk on $$G$$ is of a lesser magnitude than the cover time, then we can obtain an asymptotic deterministic estimate via a decomposition into a bounded number of dense subgraphs with high conductance. \\ (c) If $$G$$ fits neither (a) nor (b) then we give a deterministic asymptotic (2+o(1))-approximation of $$C_G$$. 
    more » « less
  3. We give an algorithm to find a minimum cut in an edge-weighted directed graph with n vertices and m edges in O ̃(n · max{m^{2/3}, n}) time. This improves on the 30 year old bound of O ̃(nm) obtained by Hao and Orlin for this problem. Using similar techniques, we also obtain O ̃ (n^2 /ε^2 )-time (1+ε)-approximation algorithms for both the minimum edge and minimum vertex cuts in directed graphs, for any fixed ε. Before our work, no (1+ε)-approximation algorithm better than the exact runtime of O ̃(nm) is known for either problem. Our algorithms follow a two-step template. In the first step, we employ a partial sparsification of the input graph to preserve a critical subset of cut values approximately. In the second step, we design algorithms to find the (edge/vertex) mincut among the preserved cuts from the first step. For edge mincut, we give a new reduction to O ̃ (min{n/m^{1/3} , √n}) calls of any maxflow subroutine, via packing arborescences in the sparsifier. For vertex mincut, we develop new local flow algorithms to identify small unbalanced cuts in the sparsified graph. 
    more » « less
  4. In the k -cut problem, we want to find the lowest-weight set of edges whose deletion breaks a given (multi)graph into k connected components. Algorithms of Karger and Stein can solve this in roughly O ( n 2k ) time. However, lower bounds from conjectures about the k -clique problem imply that Ω ( n (1- o (1)) k ) time is likely needed. Recent results of Gupta, Lee, and Li have given new algorithms for general k -cut in n 1.98k + O(1) time, as well as specialized algorithms with better performance for certain classes of graphs (e.g., for small integer edge weights). In this work, we resolve the problem for general graphs. We show that the Contraction Algorithm of Karger outputs any fixed k -cut of weight α λ k with probability Ω k ( n - α k ), where λ k denotes the minimum k -cut weight. This also gives an extremal bound of O k ( n k ) on the number of minimum k -cuts and an algorithm to compute λ k with roughly n k polylog( n ) runtime. Both are tight up to lower-order factors, with the algorithmic lower bound assuming hardness of max-weight k -clique. The first main ingredient in our result is an extremal bound on the number of cuts of weight less than 2 λ k / k , using the Sunflower lemma. The second ingredient is a fine-grained analysis of how the graph shrinks—and how the average degree evolves—in the Karger process. 
    more » « less
  5. We present an algorithm that, with high probability, generates a random spanning tree from an edge-weighted undirected graph in \Otil(n^{5/3 }m^{1/3}) time\footnote{The \Otil(\cdot) notation hides \poly(\log n) factors}. The tree is sampled from a distribution where the probability of each tree is proportional to the product of its edge weights. This improves upon the previous best algorithm due to Colbourn et al. that runs in matrix multiplication time, O(n^\omega). For the special case of unweighted graphs, this improves upon the best previously known running time of \tilde{O}(\min\{n^{\omega},m\sqrt{n},m^{4/3}\}) for m >> n^{7/4} (Colbourn et al. '96, Kelner-Madry '09, Madry et al. '15). The effective resistance metric is essential to our algorithm, as in the work of Madry et al., but we eschew determinant-based and random walk-based techniques used by previous algorithms. Instead, our algorithm is based on Gaussian elimination, and the fact that effective resistance is preserved in the graph resulting from eliminating a subset of vertices (called a Schur complement). As part of our algorithm, we show how to compute \eps-approximate effective resistances for a set SS of vertex pairs via approximate Schur complements in \Otil(m+(n + |S|)\eps^{-2}) time, without using the Johnson-Lindenstrauss lemma which requires \Otil( \min\{(m + |S|)\eps^{-2}, m+n\eps^{-4} +|S|\eps^{-2}\}) time. We combine this approximation procedure with an error correction procedure for handing edges where our estimate isn't sufficiently accurate. 
    more » « less