 NSFPAR ID:
 10327023
 Date Published:
 Journal Name:
 Journal of the ACM
 Volume:
 69
 Issue:
 1
 ISSN:
 00045411
 Page Range / eLocation ID:
 1 to 18
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

In this paper, we consider two fundamental cut approximation problems on large graphs. We prove new lower bounds for both problems that are optimal up to logarithmic factors. The first problem is approximating cuts in balanced directed graphs, where the goal is to build a data structure to provide a $(1 \pm \epsilon)$estimation of the cut values of a graph on $n$ vertices. For this problem, there are tight bounds for undirected graphs, but for directed graphs, such a data structure requires $\Omega(n^2)$ bits even for constant $\epsilon$. To cope with this, recent works consider $\beta$balanced graphs, meaning that for every directed cut, the total weight of edges in one direction is at most $\beta$ times the total weight in the other direction. We consider the foreach model, where the goal is to approximate a fixed cut with high probability, and the forall model, where the data structure must simultaneously preserve all cuts. We improve the previous $\Omega(n \sqrt{\beta/\epsilon})$ lower bound in the foreach model to $\tilde\Omega(n \sqrt{\beta}/\epsilon)$ and we improve the previous $\Omega(n \beta/\epsilon)$ lower bound in the forall model to $\Omega(n \beta/\epsilon^2)$. This resolves the main open questions of (Cen et al., ICALP, 2021). The second problem is approximating the global minimum cut in the local query model where we can only access the graph through degree, edge, and adjacency queries. We prove an $\Omega(\min\{m, \frac{m}{\epsilon^2 k}\})$ lower bound for this problem, which improves the previous $\Omega(\frac{m}{k})$ lower bound, where $m$ is the number of edges of the graph, $k$ is the minimum cut size, and we seek a $(1+\epsilon)$approximation. In addition, we observe that existing upper bounds with minor modifications match our lower bound up to logarithmic factors.more » « less

We give an algorithm to find a minimum cut in an edgeweighted directed graph with n vertices and m edges in O ̃(n · max{m^{2/3}, n}) time. This improves on the 30 year old bound of O ̃(nm) obtained by Hao and Orlin for this problem. Using similar techniques, we also obtain O ̃ (n^2 /ε^2 )time (1+ε)approximation algorithms for both the minimum edge and minimum vertex cuts in directed graphs, for any fixed ε. Before our work, no (1+ε)approximation algorithm better than the exact runtime of O ̃(nm) is known for either problem. Our algorithms follow a twostep template. In the first step, we employ a partial sparsification of the input graph to preserve a critical subset of cut values approximately. In the second step, we design algorithms to find the (edge/vertex) mincut among the preserved cuts from the first step. For edge mincut, we give a new reduction to O ̃ (min{n/m^{1/3} , √n}) calls of any maxflow subroutine, via packing arborescences in the sparsifier. For vertex mincut, we develop new local flow algorithms to identify small unbalanced cuts in the sparsified graph.more » « less

null (Ed.)The Sparsest Cut is a fundamental optimization problem that have been extensively studied. For planar inputs the problem is in P and can be solved in Õ(n 3 ) time if all vertex weights are 1. Despite a significant amount of effort, the best algorithms date back to the early 90’s and can only achieve O(log n)approximation in Õ(n) time or 3.5approximation in Õ(n 2 ) time [Rao, STOC92]. Our main result is an Ω(n 2−ε ) lower bound for Sparsest Cut even in planar graphs with unit vertex weights, under the (min, +)Convolution conjecture, showing that approxima tions are inevitable in the nearlinear time regime. To complement the lower bound, we provide a 3.3approximation in nearlinear time, improving upon the 25year old result of Rao in both time and accuracy. We also show that our lower bound is not far from optimal by observing an exact algorithm with running time Õ(n 5/2 ) improving upon the Õ(n 3 ) algorithm of Park and Phillips [STOC93]. Our lower bound accomplishes a repeatedly raised challenge by being the first finegrained lower bound for a natural planar graph problem in P. Building on our construction we prove nearquadratic lower bounds under SETH for variants of the closest pair problem in planar graphs, and use them to show that the popular AverageLinkage procedure for Hierarchical Clustering cannot be simulated in truly subquadratic time. At the core of our constructions is a diamondlike gadget that also settles the complexity of Diameter in distributed planar networks. We prove an Ω(n/ log n) lower bound on the number of communication rounds required to compute the weighted diameter of a network in the CONGET model, even when the underlying graph is planar and all nodes are D = 4 hops away from each other. This is the first poly(n) lower bound in the planardistributed setting, and it complements the recent poly(D, log n) upper bounds of Li and Parter [STOC 2019] for (exact) unweighted diameter and for (1 + ε) approximate weighted diameter.more » « less

Abstract In a Merlin–Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from Merlin) with probability 1, and rejects invalid proofs with probability arbitrarily close to 1. The running time of such a system is defined to be the length of Merlin’s proof plus the running time of Arthur. We provide new Merlin–Arthur proof systems for some key problems in finegrained complexity. In several cases our proof systems have optimal running time. Our main results include:
Certifying that a list of
n integers has no 3SUM solution can be done in Merlin–Arthur time . Previously, Carmosino et al. [ITCS 2016] showed that the problem has a nondeterministic algorithm running in$$\tilde{O}(n)$$ $\stackrel{~}{O}\left(n\right)$ time (that is, there is a proof system with proofs of length$$\tilde{O}(n^{1.5})$$ $\stackrel{~}{O}\left({n}^{1.5}\right)$ and a deterministic verifier running in$$\tilde{O}(n^{1.5})$$ $\stackrel{~}{O}\left({n}^{1.5}\right)$ time).$$\tilde{O}(n^{1.5})$$ $\stackrel{~}{O}\left({n}^{1.5}\right)$Counting the number of
k cliques with total edge weight equal to zero in ann node graph can be done in Merlin–Arthur time (where$${\tilde{O}}(n^{\lceil k/2\rceil })$$ $\stackrel{~}{O}\left({n}^{\lceil k/2\rceil}\right)$ ). For odd$$k\ge 3$$ $k\ge 3$k , this bound can be further improved for sparse graphs: for example, counting the number of zeroweight triangles in anm edge graph can be done in Merlin–Arthur time . Previous Merlin–Arthur protocols by Williams [CCC’16] and Björklund and Kaski [PODC’16] could only count$${\tilde{O}}(m)$$ $\stackrel{~}{O}\left(m\right)$k cliques in unweighted graphs, and had worse running times for smallk .Computing the AllPairs Shortest Distances matrix for an
n node graph can be done in Merlin–Arthur time . Note this is optimal, as the matrix can have$$\tilde{O}(n^2)$$ $\stackrel{~}{O}\left({n}^{2}\right)$ nonzero entries in general. Previously, Carmosino et al. [ITCS 2016] showed that this problem has an$$\Omega (n^2)$$ $\Omega \left({n}^{2}\right)$ nondeterministic time algorithm.$$\tilde{O}(n^{2.94})$$ $\stackrel{~}{O}\left({n}^{2.94}\right)$Certifying that an
n variablek CNF is unsatisfiable can be done in Merlin–Arthur time . We also observe an algebrization barrier for the previous$$2^{n/2  n/O(k)}$$ ${2}^{n/2n/O\left(k\right)}$ time Merlin–Arthur protocol of R. Williams [CCC’16] for$$2^{n/2}\cdot \textrm{poly}(n)$$ ${2}^{n/2}\xb7\text{poly}\left(n\right)$ SAT: in particular, his protocol algebrizes, and we observe there is no algebrizing protocol for$$\#$$ $\#$k UNSAT running in time. Therefore we have to exploit nonalgebrizing properties to obtain our new protocol.$$2^{n/2}/n^{\omega (1)}$$ ${2}^{n/2}/{n}^{\omega \left(1\right)}$ Due to the centrality of these problems in finegrained complexity, our results have consequences for many other problems of interest. For example, our work implies that certifying there is no Subset Sum solution toCertifying a Quantified Boolean Formula is true can be done in Merlin–Arthur time
. Previously, the only nontrivial result known along these lines was an Arthur–Merlin–Arthur protocol (where Merlin’s proof depends on some of Arthur’s coins) running in$$2^{4n/5}\cdot \textrm{poly}(n)$$ ${2}^{4n/5}\xb7\text{poly}\left(n\right)$ time.$$2^{2n/3}\cdot \textrm{poly}(n)$$ ${2}^{2n/3}\xb7\text{poly}\left(n\right)$n integers can be done in Merlin–Arthur time , improving on the previous best protocol by Nederlof [IPL 2017] which took$$2^{n/3}\cdot \textrm{poly}(n)$$ ${2}^{n/3}\xb7\text{poly}\left(n\right)$ time.$$2^{0.49991n}\cdot \textrm{poly}(n)$$ ${2}^{0.49991n}\xb7\text{poly}\left(n\right)$ 
Expander graphs play a central role in graph theory and algorithms. With a number of powerful algorithmic tools developed around them, such as the CutMatching game, expander pruning, expander decomposition, and algorithms for decremental AllPairs Shortest Paths (APSP) in expanders, to name just a few, the use of expanders in the design of graph algorithms has become ubiquitous. Specific applications of interest to us are fast deterministic algorithms for cut problems in static graphs, and algorithms for dynamic distancebased graph problems, such as APSP. Unfortunately, the use of expanders in these settings incurs a number of drawbacks. For example, the best currently known algorithm for decremental APSP in constantdegree expanders can only achieve a (log n) O(1/ 2 ) approximation with n 1+O( ) total update time for any . All currently known algorithms for the Cut Player in the CutMatching game are either randomized, or provide rather weak guarantees: expansion 1/(log n) 1/ with running time n 1+O( ) . This, in turn, leads to somewhat weak algorithmic guarantees for several central cut problems: the best current almost linear time deterministic algorithms for Sparsest Cut, Lowest Conductance Cut, and Balanced Cut can only achieve approximation factor (log n) ω(1). Lastly, when relying on expanders in distancebased problems, such as dynamic APSP, via current methods, it seems inevitable that one has to settle for approximation factors that are at least Ω(log n). In contrast, we do not have any negative results that rule out a factor5 approximation with nearlinear total update time. In this paper we propose the use of wellconnected graphs, and introduce a new algorithmic toolkit for such graphs that, in a sense, mirrors the above mentioned algorithmic tools for expanders. One of these new tools is the Distanced Matching game, an analogue of the CutMatching game for wellconnected graphs. We demonstrate the power of these new tools by obtaining better results for several of the problems mentioned above. First, we design an algorithm for decremental APSP in expanders with significantly better guarantees: in a constantdegree expander, the algorithm achieves (log n) 1+o(1)approximation, with total update time n 1+o(1). We also obtain a deterministic algorithm for the Cut Player in the CutMatching game that achieves expansion 1 (log n) 5+o(1) in time n 1+o(1), deterministic almost lineartime algorithms for Sparsest Cut, LowestConductance Cut, and Minimum Balanced Cut with approximation factors O(poly log n), as well as improved deterministic algorithm for Expander Decomposition. We believe that the use of wellconnected graphs instead of expanders in various dynamic distancebased problems (such as APSP in general graphs) has the potential of providing much stronger guarantees, since we are no longer necessarily restricted to superlogarithmic approximation factors.more » « less