skip to main content

Title: Optimal Bounds for the k -cut Problem
In the k -cut problem, we want to find the lowest-weight set of edges whose deletion breaks a given (multi)graph into k connected components. Algorithms of Karger and Stein can solve this in roughly O ( n 2k ) time. However, lower bounds from conjectures about the k -clique problem imply that Ω ( n (1- o (1)) k ) time is likely needed. Recent results of Gupta, Lee, and Li have given new algorithms for general k -cut in n 1.98k + O(1) time, as well as specialized algorithms with better performance for certain classes of graphs (e.g., for small integer edge weights). In this work, we resolve the problem for general graphs. We show that the Contraction Algorithm of Karger outputs any fixed k -cut of weight α λ k with probability Ω k ( n - α k ), where λ k denotes the minimum k -cut weight. This also gives an extremal bound of O k ( n k ) on the number of minimum k -cuts and an algorithm to compute λ k with roughly n k polylog( n ) runtime. Both are tight up to lower-order factors, with the algorithmic lower bound assuming hardness of max-weight k -clique. The first main ingredient in our result is an extremal bound on the number of cuts of weight less than 2 λ k / k , using the Sunflower lemma. The second ingredient is a fine-grained analysis of how the graph shrinks—and how the average degree evolves—in the Karger process.  more » « less
Award ID(s):
2006953 1955785 1907820
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of the ACM
Page Range / eLocation ID:
1 to 18
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we consider two fundamental cut approximation problems on large graphs. We prove new lower bounds for both problems that are optimal up to logarithmic factors. The first problem is approximating cuts in balanced directed graphs, where the goal is to build a data structure to provide a $(1 \pm \epsilon)$-estimation of the cut values of a graph on $n$ vertices. For this problem, there are tight bounds for undirected graphs, but for directed graphs, such a data structure requires $\Omega(n^2)$ bits even for constant $\epsilon$. To cope with this, recent works consider $\beta$-balanced graphs, meaning that for every directed cut, the total weight of edges in one direction is at most $\beta$ times the total weight in the other direction. We consider the for-each model, where the goal is to approximate a fixed cut with high probability, and the for-all model, where the data structure must simultaneously preserve all cuts. We improve the previous $\Omega(n \sqrt{\beta/\epsilon})$ lower bound in the for-each model to $\tilde\Omega(n \sqrt{\beta}/\epsilon)$ and we improve the previous $\Omega(n \beta/\epsilon)$ lower bound in the for-all model to $\Omega(n \beta/\epsilon^2)$. This resolves the main open questions of (Cen et al., ICALP, 2021). The second problem is approximating the global minimum cut in the local query model where we can only access the graph through degree, edge, and adjacency queries. We prove an $\Omega(\min\{m, \frac{m}{\epsilon^2 k}\})$ lower bound for this problem, which improves the previous $\Omega(\frac{m}{k})$ lower bound, where $m$ is the number of edges of the graph, $k$ is the minimum cut size, and we seek a $(1+\epsilon)$-approximation. In addition, we observe that existing upper bounds with minor modifications match our lower bound up to logarithmic factors. 
    more » « less
  2. We give an algorithm to find a minimum cut in an edge-weighted directed graph with n vertices and m edges in O ̃(n · max{m^{2/3}, n}) time. This improves on the 30 year old bound of O ̃(nm) obtained by Hao and Orlin for this problem. Using similar techniques, we also obtain O ̃ (n^2 /ε^2 )-time (1+ε)-approximation algorithms for both the minimum edge and minimum vertex cuts in directed graphs, for any fixed ε. Before our work, no (1+ε)-approximation algorithm better than the exact runtime of O ̃(nm) is known for either problem. Our algorithms follow a two-step template. In the first step, we employ a partial sparsification of the input graph to preserve a critical subset of cut values approximately. In the second step, we design algorithms to find the (edge/vertex) mincut among the preserved cuts from the first step. For edge mincut, we give a new reduction to O ̃ (min{n/m^{1/3} , √n}) calls of any maxflow subroutine, via packing arborescences in the sparsifier. For vertex mincut, we develop new local flow algorithms to identify small unbalanced cuts in the sparsified graph. 
    more » « less
  3. null (Ed.)
    The Sparsest Cut is a fundamental optimization problem that have been extensively studied. For planar inputs the problem is in P and can be solved in Õ(n 3 ) time if all vertex weights are 1. Despite a significant amount of effort, the best algorithms date back to the early 90’s and can only achieve O(log n)-approximation in Õ(n) time or 3.5-approximation in Õ(n 2 ) time [Rao, STOC92]. Our main result is an Ω(n 2−ε ) lower bound for Sparsest Cut even in planar graphs with unit vertex weights, under the (min, +)-Convolution conjecture, showing that approxima- tions are inevitable in the near-linear time regime. To complement the lower bound, we provide a 3.3-approximation in near-linear time, improving upon the 25-year old result of Rao in both time and accuracy. We also show that our lower bound is not far from optimal by observing an exact algorithm with running time Õ(n 5/2 ) improving upon the Õ(n 3 ) algorithm of Park and Phillips [STOC93]. Our lower bound accomplishes a repeatedly raised challenge by being the first fine-grained lower bound for a natural planar graph problem in P. Building on our construction we prove near-quadratic lower bounds under SETH for variants of the closest pair problem in planar graphs, and use them to show that the popular Average-Linkage procedure for Hierarchical Clustering cannot be simulated in truly subquadratic time. At the core of our constructions is a diamond-like gadget that also settles the complexity of Diameter in distributed planar networks. We prove an Ω(n/ log n) lower bound on the number of communication rounds required to compute the weighted diameter of a network in the CONGET model, even when the underlying graph is planar and all nodes are D = 4 hops away from each other. This is the first poly(n) lower bound in the planar-distributed setting, and it complements the recent poly(D, log n) upper bounds of Li and Parter [STOC 2019] for (exact) unweighted diameter and for (1 + ε) approximate weighted diameter. 
    more » « less
  4. Abstract

    In a Merlin–Arthur proof system, the proof verifier (Arthur) accepts valid proofs (from Merlin) with probability 1, and rejects invalid proofs with probability arbitrarily close to 1. The running time of such a system is defined to be the length of Merlin’s proof plus the running time of Arthur. We provide new Merlin–Arthur proof systems for some key problems in fine-grained complexity. In several cases our proof systems have optimal running time. Our main results include:

    Certifying that a list ofnintegers has no 3-SUM solution can be done in Merlin–Arthur time$$\tilde{O}(n)$$O~(n). Previously, Carmosino et al. [ITCS 2016] showed that the problem has a nondeterministic algorithm running in$$\tilde{O}(n^{1.5})$$O~(n1.5)time (that is, there is a proof system with proofs of length$$\tilde{O}(n^{1.5})$$O~(n1.5)and a deterministic verifier running in$$\tilde{O}(n^{1.5})$$O~(n1.5)time).

    Counting the number ofk-cliques with total edge weight equal to zero in ann-node graph can be done in Merlin–Arthur time$${\tilde{O}}(n^{\lceil k/2\rceil })$$O~(nk/2)(where$$k\ge 3$$k3). For oddk, this bound can be further improved for sparse graphs: for example, counting the number of zero-weight triangles in anm-edge graph can be done in Merlin–Arthur time$${\tilde{O}}(m)$$O~(m). Previous Merlin–Arthur protocols by Williams [CCC’16] and Björklund and Kaski [PODC’16] could only countk-cliques in unweighted graphs, and had worse running times for smallk.

    Computing the All-Pairs Shortest Distances matrix for ann-node graph can be done in Merlin–Arthur time$$\tilde{O}(n^2)$$O~(n2). Note this is optimal, as the matrix can have$$\Omega (n^2)$$Ω(n2)nonzero entries in general. Previously, Carmosino et al. [ITCS 2016] showed that this problem has an$$\tilde{O}(n^{2.94})$$O~(n2.94)nondeterministic time algorithm.

    Certifying that ann-variablek-CNF is unsatisfiable can be done in Merlin–Arthur time$$2^{n/2 - n/O(k)}$$2n/2-n/O(k). We also observe an algebrization barrier for the previous$$2^{n/2}\cdot \textrm{poly}(n)$$2n/2·poly(n)-time Merlin–Arthur protocol of R. Williams [CCC’16] for$$\#$$#SAT: in particular, his protocol algebrizes, and we observe there is no algebrizing protocol fork-UNSAT running in$$2^{n/2}/n^{\omega (1)}$$2n/2/nω(1)time. Therefore we have to exploit non-algebrizing properties to obtain our new protocol.

    Certifying a Quantified Boolean Formula is true can be done in Merlin–Arthur time$$2^{4n/5}\cdot \textrm{poly}(n)$$24n/5·poly(n). Previously, the only nontrivial result known along these lines was an Arthur–Merlin–Arthur protocol (where Merlin’s proof depends on some of Arthur’s coins) running in$$2^{2n/3}\cdot \textrm{poly}(n)$$22n/3·poly(n)time.

    Due to the centrality of these problems in fine-grained complexity, our results have consequences for many other problems of interest. For example, our work implies that certifying there is no Subset Sum solution tonintegers can be done in Merlin–Arthur time$$2^{n/3}\cdot \textrm{poly}(n)$$2n/3·poly(n), improving on the previous best protocol by Nederlof [IPL 2017] which took$$2^{0.49991n}\cdot \textrm{poly}(n)$$20.49991n·poly(n)time.

    more » « less
  5. Expander graphs play a central role in graph theory and algorithms. With a number of powerful algorithmic tools developed around them, such as the Cut-Matching game, expander pruning, expander decomposition, and algorithms for decremental All-Pairs Shortest Paths (APSP) in expanders, to name just a few, the use of expanders in the design of graph algorithms has become ubiquitous. Specific applications of interest to us are fast deterministic algorithms for cut problems in static graphs, and algorithms for dynamic distance-based graph problems, such as APSP. Unfortunately, the use of expanders in these settings incurs a number of drawbacks. For example, the best currently known algorithm for decremental APSP in constant-degree expanders can only achieve a (log n) O(1/ 2 ) -approximation with n 1+O( ) total update time for any . All currently known algorithms for the Cut Player in the Cut-Matching game are either randomized, or provide rather weak guarantees: expansion 1/(log n) 1/ with running time n 1+O( ) . This, in turn, leads to somewhat weak algorithmic guarantees for several central cut problems: the best current almost linear time deterministic algorithms for Sparsest Cut, Lowest Conductance Cut, and Balanced Cut can only achieve approximation factor (log n) ω(1). Lastly, when relying on expanders in distancebased problems, such as dynamic APSP, via current methods, it seems inevitable that one has to settle for approximation factors that are at least Ω(log n). In contrast, we do not have any negative results that rule out a factor-5 approximation with near-linear total update time. In this paper we propose the use of well-connected graphs, and introduce a new algorithmic toolkit for such graphs that, in a sense, mirrors the above mentioned algorithmic tools for expanders. One of these new tools is the Distanced Matching game, an analogue of the Cut-Matching game for well-connected graphs. We demonstrate the power of these new tools by obtaining better results for several of the problems mentioned above. First, we design an algorithm for decremental APSP in expanders with significantly better guarantees: in a constant-degree expander, the algorithm achieves (log n) 1+o(1)-approximation, with total update time n 1+o(1). We also obtain a deterministic algorithm for the Cut Player in the Cut-Matching game that achieves expansion 1 (log n) 5+o(1) in time n 1+o(1), deterministic almost linear-time algorithms for Sparsest Cut, Lowest-Conductance Cut, and Minimum Balanced Cut with approximation factors O(poly log n), as well as improved deterministic algorithm for Expander Decomposition. We believe that the use of well-connected graphs instead of expanders in various dynamic distance-based problems (such as APSP in general graphs) has the potential of providing much stronger guarantees, since we are no longer necessarily restricted to superlogarithmic approximation factors. 
    more » « less