skip to main content


Title: Effect of Internal Reflections on the Performance of Lens-Integrated mmW and THz Antennas
Multiple reflections from electrically large hemispherical lens surfaces of lens-integrated antennas are investigated using an iterative Huygens’ integral approach. In particular for mmW- and THz-band applications, double-slot antennas on extended hemispherical high-resistivity Silicon lenses have been widely used due to the high Gaussisicity of their radiation/ reception patterns. Previous studies assumed an electrically-large lens and evaluated the antenna pattern using first-order physical optics approximation. Although this approach is fairly accurate for estimating the radiation pattern of such antennas, the reception pattern and the associated performance of receiving sensors need a more careful consideration due to the relatively large level of internal reflections from the concave boundary of the high index lens. Here, we present an iterative method to compute and study the effects of multiple reflections inside electrically large lenses. The rich nature of quasi-optical wave behavior is demonstrated through several examples corresponding to individual bounces of the incident, reflected, and transmitted waves from a double slot antenna.  more » « less
Award ID(s):
1710977
NSF-PAR ID:
10104364
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Computational Electromagnetics Society Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We analyze the Gaussian character of multiple reflections in extended hemispherical lenses which are widely used in terahertz spectroscopy. In particular, the first, second and third order reflections from a high-refractive-index extended hemispherical lens illuminated by a plane wave are characterized using high-frequency approximation. To demonstrate the importance of the Gaussicity of the incident and reflected beams on coupled power levels, we study a quasi-optical link involving a horn antenna and an off-axis parabolic reflector. Although such multiple reflections with distinctly different Gaussian character can be time-gated in time-domain spectroscopy systems, care must be exercised in continuous wave systems. Depending on the quasi-optical link, i.e. positioning of the antennas and reflectors, second and third-order reflections may induce significant variations of the sensed signal. 
    more » « less
  2. We report the design, simulation, and analysis of a THz phased array, using lens-coupled annular-slot antennas (ASAs) for potential beyond 5G or 6G wireless communications. For a prototype demonstration, the ASA employed was designed on a high resistivity Si substrate with a radius of 106 μm, and a gap width of 6 um for operation at 200 GHz. In order to achieve higher antenna gain and efficiency, an extended hemispherical silicon lens was also used. To investigate the effect of the silicon lens on the ASA phased array, a 1 × 3 array and 1 × 5 array (the element distance is 0.55λ) were implemented with a silicon lens using different extension lengths. The simulation shows that for a 1 × 3 array, a ±17° scanning angle with an about −10 dB sidelobe level and 11.82 dB gain improvement (compared to the array without lens) can be achieved using a lens radius of 5000 μm and an extension length of 1000 μm. A larger scanning angle of ±31° can also be realized by a 1 × 5 array (using a shorter extension length of 250 μm). The approach of designing a 200 GHz lens-coupled phased array reported here is informative and valuable for the future development of wireless communication technologies. 
    more » « less
  3. Diagnosis of neural diseases can be performed using microsystems that record neural signals collected simultaneously after neural simulations. Headstage and homecage-based recording systems can be implanted on small freely-moving animals to test such system which requires miniaturized, lightweight, and high gain antennas in order for the small animals to carry them easily while also decreasing loss during data transmission. This paper proposes a 15×15 mm2 slot antenna with a 50 Ω microstrip excitation line. The slot antenna is created by the addition of slots in the ground plane which is a common miniaturization method as it results in ultrawideband operating frequency. A lumped component-based model along with a 3D EM model of the modified SMA connector used for the measurement and headstage model is also developed to observe the effect on the antenna performance. The antenna achieved an operating frequency of 4.25 - 9.4 GHz and a bidirectional radiation pattern with gain ranging from 2.24 to 4.35 dBi. The proposed antenna is also circularly polarized and achieves 80.6% - 90.8% radiation efficiency over the operating BW. It can transmit a maximum of 20 dBm of power over the operating frequency without exceeding the FCC-imposed SAR limit. Based on the performance, the antenna is suitable for headstage and homecage-based neural signal recording systems with IR-UWB transmitter for high data rate transmission. 
    more » « less
  4. Abstract

    To address demands for increased data transmission rates, electrically small antennas (ESAs) that simultaneously offer large frequency bandwidths and small physical sizes are of growing interest. 3D layouts are particularly important in this context and among various 3D ESAs, systems that adopt hemispherical shapes are very promising, because they can occupy the entire Chu‐sphere and offer outstanding electrical performance. Researchers have developed a few different approaches to fabricate high‐quality hemispherical ESAs, but most have static layouts and fixed operating frequencies. Here, a mechanically guided 3D assembly approach is introduced for the design and fabrication of deformable hemispherical ESAs that can offer tunable, dynamic properties to adapt to changes in environmental conditions. The strategy exploits controlled compressive buckling of strategically patterned 2D precursor structures, as a low‐cost and high‐yield scheme that can exploit conventional, planar processing technologies and commercially available platforms. Combined numerical simulations and experimental measurements show outstanding performance characteristics in terms of the quality factor and radiation efficiency. Application of external tensile strains to elastomeric substrates for these systems allows them to be reshaped and reversibly tuned through a wide range of center frequencies. Mechanical testing under different loading conditions demonstrates the ability of these ESAs to accommodate large deformations.

     
    more » « less
  5. The large spectrum available in the millimeter- Wave (mmWave) band has emerged as a promising solution for meeting the huge capacity requirements of the 5th generation (5G) wireless networks. However, to fully harness the potential of mmWave communications, obstacles such as severe path loss, channel sparsity and hardware complexity should be overcome. In this paper, we introduce a generalized reconfigurable antenna multiple-input multiple-output (MIMO) architecture that takes advantage of lens-based reconfigurable antennas. The considered antennas can support multiple radiation patterns simultaneously by using a single RF chain. The degrees of freedom provided by the reconfigurable antennas are used to, first, combat channel sparsity in MIMO mmWave systems. Further, to suppress high path loss and shadowing at mmWave frequencies, we use a rate- one space-time block code. Our analysis and simulations show that the proposed reconfigurable MIMO architecture achieves full-diversity gain by using linear receivers and without requiring channel state information at the transmitter. Moreover, simulations show that the proposed architecture outperforms traditional MIMO transmission schemes in mmWave channel settings. 
    more » « less