skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dense Super-Resolution Imaging of Molecular Orientation Via Joint Sparse Basis Deconvolution and Spatial Pooling
In single-molecule super-resolution microscopy, engineered point-spread functions (PSFs) are designed to efficiently encode new molecular properties, such as 3D orientation, into complex spatial features captured by a camera. To fully benefit from their optimality, algorithms must estimate multi-dimensional parameters such as molecular position and orientation in the presence of PSF overlap and model-experiment mismatches. Here, we present a novel joint sparse deconvolution algorithm based on the decomposition of fluorescence images into six basis images that characterize molecular orientation. The proposed algorithm exploits a group-sparsity structure across these basis images and applies a pooling strategy on corresponding spatial features for robust simultaneous estimates of the number, brightness, 2D position, and 3D orientation of fluorescent molecules. We demonstrate this method by imaging DNA transiently labeled with the intercalating dye YOYO-1. Imaging the position and orientation of each molecule reveals orientational order and disorder within DNA with nanoscale spatial precision.  more » « less
Award ID(s):
1653777
PAR ID:
10104459
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
Page Range / eLocation ID:
325 - 329
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nanoarchitectural control of matter is crucial for next-generation technologies. DNA origami templates are harnessed to accurately position single molecules; however, direct single molecule evidence is lacking regarding how well DNA origami can control the orientation of such molecules in three-dimensional space, as well as the factors affecting control. Here, we present two strategies for controlling the polar (θ) and in-plane azimuthal (ϕ) angular orientations of cyanine Cy5 single molecules tethered on rationally-designed DNA origami templates that are physically adsorbed (physisorbed) on glass substrates. By using dipolar imaging to evaluate Cy5′s orientation and super-resolution microscopy, the absolute spatial orientation of Cy5 is calculated relative to the DNA template. The sequence-dependent partial intercalation of Cy5 is discovered and supported theoretically using density functional theory and molecular dynamics simulations, and it is harnessed as our first strategy to achieve θ control for a full revolution with dispersion as small as ±4.5°. In our second strategy, ϕ control is achieved by mechanically stretching the Cy5 from its two tethers, being the dispersion ±10.3° for full stretching. These results can in principle be applied to any single molecule, expanding in this way the capabilities of DNA as a functional templating material for single-molecule orientation control. The experimental and modeling insights provided herein will help engineer similar self-assembling molecular systems based on polymers, such as RNA and proteins. 
    more » « less
  2. Abstract In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules μm−2) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single‐molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus “wobble”) of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve nanodomains and enzyme‐induced compositional heterogeneity within membranes, where NR within liquid‐ordered vs. liquid‐disordered domains shows a ≈4° difference in polar angle and a ≈0.3π sr difference in wobble angle. As a new type of imaging spectroscopy, SMOLM exposes the organizational and functional dynamics of lipid‐lipid, lipid‐protein, and lipid‐dye interactions with single‐molecule, nanoscale resolution. 
    more » « less
  3. Precisely measuring the three-dimensional position and orientation of individual fluorophores is challenging due to the substantial photon shot noise in single-molecule experiments. Facing this limited photon budget, numerous techniques have been developed to encode 2D and 3D position and 2D and 3D orientation information into fluorescence images. In this work, we adapt classical and quantum estimation theory and propose a mathematical framework to derive the best possible precision for measuring the position and orientation of dipole-like emitters for any fixed imaging system. We find that it is impossible to design an instrument that achieves the maximum sensitivity limit for measuring all possible rotational motions. Further, our vectorial dipole imaging model shows that the best quantum-limited localization precision is 4%–8% worse than that suggested by a scalar monopole model. Overall, we conclude that no single instrument can be optimized for maximum precision across all possible 2D and 3D localization and orientation measurement tasks. 
    more » « less
  4. Imaging of both the positions and orientations of single fluorophores, termed single-molecule orientation-localization microscopy, is a powerful tool for the study of biochemical processes. However, the limited photon budget associated with single-molecule fluorescence makes high-dimensional imaging with isotropic, nanoscale spatial resolution a formidable challenge. Here we realize a radially and azimuthally polarized multi-view reflector (raMVR) microscope for the imaging of the three-dimensional (3D) positions and 3D orientations of single molecules, with precisions of 10.9 nm and 2.0° over a 1.5-μm depth range. The raMVR microscope achieves 6D super-resolution imaging of Nile red molecules transiently bound to lipid-coated spheres, accurately resolving their spherical morphology, despite refractive-index mismatch. By observing the rotational dynamics of Nile red, raMVR images also resolve the infiltration of lipid membranes by amyloid-beta oligomers without covalent labelling. Finally, we demonstrate 6D imaging of cell membranes, where the orientations of specific fluorophores reveal heterogeneity in membrane fluidity. With its nearly isotropic 3D spatial resolution and orientation measurement precision, we expect the raMVR microscope to enable 6D imaging of molecular dynamics within biological and chemical systems with exceptional detail. 
    more » « less
  5. Abstract We present a feature-selective segmentation and merging technique to achieve spatially resolved surface profiles of the parts by 3D stereoscopy and strobo-stereoscopy. A pair of vision cameras capture images of the parts at different angles, and 3D stereoscopic images can be reconstructed. Conventional filtering processes of the 3D images involve data loss and lower the spatial resolution of the image. In this study, the 3D reconstructed image was spatially resolved by automatically recognizing and segmenting the features on the raw images, locally and adaptively applying super-resolution algorithm to the segmented images based on the classified features, and then merging those filtered segments. Here, the features are transformed into masks that selectively separate the features and background images for segmentation. The experimental results were compared with those of conventional filtering methods by using Gaussian filters and bandpass filters in terms of spatial frequency and profile accuracy. As a result, the selective feature segmentation technique was capable of spatially resolved 3D stereoscopic imaging while preserving imaging features. 
    more » « less