skip to main content


Title: Analyzing transient heat and moisture transport surrounding a heat source in unsaturated porous media using the Green's function
Award ID(s):
1804822
NSF-PAR ID:
10104963
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geothermics
Volume:
81
Issue:
C
ISSN:
0375-6505
Page Range / eLocation ID:
224 to 234
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We analyze the role of mesoscale heat advection in a mixed layer (ML) heat budget, using a regional high-resolution coupled model with realistic atmospheric forcing and an idealized ocean component. The model represents two regions in the Southern Ocean, one with strong ocean currents and the other with weak ocean currents. We conclude that heat advection by oceanic currents creates mesoscale anomalies in sea surface temperature (SST), while the atmospheric turbulent heat fluxes dampen these SST anomalies. This relationship depends on the spatial scale, the strength of the currents, and the mixed layer depth (MLD). At the oceanic mesoscale, there is a positive correlation between the advection and SST anomalies, especially when the currents are strong overall. For large-scale zonal anomalies, the ML-integrated advection determines the heating/cooling of the ML, while the SST anomalies tend to be larger in size than the advection and the spatial correlation between these two fields is weak. The effects of atmospheric forcing on the ocean are modulated by the MLD variability. The significance of Ekman advection and diabatic heating is secondary to geostrophic advection except in summer when the MLD is shallow. This study links heat advection, SST anomalies, and air–sea heat fluxes at ocean mesoscales, and emphasizes the overall dominance of intrinsic oceanic variability in mesoscale air–sea heat exchange in the Southern Ocean. 
    more » « less