As problems become more complex, global, and interdisciplinary, engineers need to develop novel solutions and utilize resources, information, and tools in strategic and creative ways. Divergent thinking describes a process where multiple options, pathways, alternatives, or ideas are developed. For engineering students, divergent thinking can facilitate flexibility and expand opportunities considered when solving problems. To develop divergent thinking skills in engineering, we must understand how it is (and is not) facilitated in current engineering education experiences. Current pedagogy and resources available in engineering education on divergent thinking are limited. Thus, our research focused on exploring educational experiences in which students felt they considered divergent thinking. In this paper, we describe the iterative development of an interview protocol to elicit student experiences related to opportunities for divergent thinking. From the initial round of piloting, we found student awareness of divergent thinking was limited. Our findings highlight the need to structure questions in ways that align with students’ existing understandings of their engineering experiences. Our team made modifications to the protocol to address this, including using accessible terms to describe divergent thinking, asking students to describe one example project they remembered well, and. focusing questions within one step of the project selected by the student as most relevant to their exploration of alternatives. This iterative development of the protocol was successful in eliciting divergent thinking experiences across their work.
more »
« less
Defining and Assessing Systems Thinking in Diverse Engineering Populations
Engineers are called to play an important role in addressing the complex problems of our global society, such as climate change and global health care. In order to adequately address these complex problems, engineers must be able to identify and incorporate into their decision making relevant aspects of systems in which their work is contextualized, a skill often referred to as systems thinking. However, within engineering, research on systems thinking tends to emphasize the ability to recognize potentially relevant constituent elements and parts of an engineering problem, rather than how these constituent elements and parts are embedded in broader economic, sociocultural, and temporal contexts and how all of these must inform decision making about problems and solutions. Additionally, some elements of systems thinking, such as an awareness of a particular sociocultural context or the coordination of work among members of a cross-disciplinary team, are not always recognized as core engineering skills, which alienates those whose strengths and passions are related to, for example, engineering systems that consider and impact social change. Studies show that women and minorities, groups underrepresented within engineering, are drawn to engineering in part for its potential to address important social issues. Emphasizing the importance of systems thinking and developing a more comprehensive definition of systems thinking that includes both constituent parts and contextual elements of a system will help students recognize the relevance and value of these other elements of engineering work and support full participation in engineering by a diverse group of students.
We provide an overview of our study, in which we are examining systems thinking across a range of expertise to develop a scenario-based assessment tool that educators and researchers can use to evaluate engineering students’ systems thinking competence. Consistent with the aforementioned need to define and study systems thinking in a comprehensive, inclusive manner, we begin with a definition of systems thinking as a holistic approach to problem solving in which linkages and interactions of the immediate work with constituent parts, the larger sociocultural context, and potential impacts over time are identified and incorporated into decision making. In our study, we seek to address two key questions: 1) How do engineers of different levels of education and experience approach problems that require systems thinking? and 2) How do different types of life, educational, and work experiences relate to individuals’ demonstrated level of expertise in solving systems thinking problems? Our study is comprised of three phases. The first two phases include a semi-structured interview with engineering students and professionals about their experiences solving a problem requiring systems thinking and a think-aloud interview in which participants are asked to talk through how they would approach a given engineering scenario and later reflect on the experiences that inform their thinking. Data from these two phases will be used to develop a written assessment tool, which we will test by administering the written instrument to undergraduate and graduate engineering students in our third study phase. Our paper describes our study design and framing and includes preliminary findings from the first phase of our study.
more »
« less
- Award ID(s):
- 1733665
- PAR ID:
- 10105632
- Date Published:
- Journal Name:
- Proceedings of the American Society for Engineering Education Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work in progress paper poses the research question: what are the qualitatively different ways that novice and expert engineers experience ambiguity? Engineers are frequently confronted with complex, unique, and challenging problems. Many of our most pressing engineering problems contain ambiguous elements, and a core activity of engineering is solving these complex problems effectively. We present a pilot study consisting of four in-depth interviews with senior civil engineering students. The data collection is ongoing; therefore, our results are not complete. Some preliminary categories of ambiguity have been identified. Once the data set is complete, we will analyze it using phenomenography in order to better understand the variations in these individuals’ experiences of ambiguity in engineering problem solving.more » « less
-
Engineering design thinking has become an important part of the educational discussion for both researchers and practitioners. Colleges and universities seek to graduate engineering students who can engage in the complex nature of combining both technical performance with design thinking skills. Prior research has shown that design thinking can be a solution for solving complicated technical and social issues in a holistic, adaptive way. However, little is known about how students make sense of their design thinking experiences and reconcile that into their perceptions of what it means to be a successful engineer. As part of a five-year National Science Foundation REvolutionizing Engineering and Computer Science Departments (NSF-RED) grant, this study highlights the experiences of students engaged in a course which has been redesigned to enhance student development through design thinking pedagogy. This case study sought to understand how electrical, computer, and software engineering students engage with design thinking and how that engagement shapes their perceptions of what success looks like. The case study was informed through observations of lecture and lab classroom contexts, interviews with students, and a review of relevant course documents. Participants met the following criteria: (a) were over the age of 18, (b) majoring in CES engineering, and (c) were currently enrolled in one of two courses currently undergoing redesign: a second-year electrical engineering course called Circuits or a second-year computer engineering course called Embedded Systems. Preliminary findings reveal that students engaged in the design thinking course described a disconnect between design thinking elements of the course and their perceptions of what it meant to be a successful electrical, computer, or software engineer. Although design thinking concepts focused on empathy-building and customer needs, it was often difficult for engineering students to see beyond the technical content of their course and conceptualize elements of design thinking as essential to their successful performance as engineers. This study bears significance to practitioners and researchers interested in (re)designing curriculum to meet the growing needs of innovation for today’s customer’s. Implications for policy and practice will be discussed to enhance the way that engineering programs, curricula, and workforce training are created.more » « less
-
Engineering identity is an integral determinant of academic success in engineering school, as it allows students to have an understanding of themselves in relation to what they study. Studies in engineering and other STEM disciplines have shown a positive correlation between identity and retention. Previous studies by Carlone and Johnson, Hazari, and Godwin have examined the following facets of a STEM or engineering identity: performance, competence, recognition and interest. While many current papers examine how culture and social interactions may influence identity, this paper examines how doing engineering coursework can uncover or influence a student’s engineering identity. This comparative case study examines how two students’ experiences solving an Open-ended Modeling Problem (OEMP) in their statics class may have contributed to their engineering identities. Cristina and Dylan, our two cases, both recalled how they solved a problem about a hands-free crutch device in an interview at the end of the semester. None of the questions were explicitly about identity. The interviews indicate that both students were interested in solving these problems and recognized themselves as being capable of solving the problem. In the case of Cristina, the problem helped her build confidence, both through her understanding of the material and her problem solving abilities. Our results also saw both students discussing how the disciplinary authenticity made them ‘feel like an engineer.’ Implications of this work include a deeper understanding of how day-to-day problem solving within courses can influence engineering identity and may aid in understanding how certain activities and scaffolding can influence engineering identity. This is important as students who have strong engineering identities are more likely to stay in engineering, become competent engineers, and find success in their respective fields. This research can inform educators on the importance of assigning novel, ill-defined problems that require students to apply their critical thinking skills and logic skills in real world situations.more » « less
-
Abstract— Engineers are frequently confronted with complex, unique, and challenging problems. Many of our most pressing engineering problems contain ambiguous elements, and a core activity of engineering is being able to solve these complex problems effectively. While engineering problems are often described as ambiguous, ambiguity has not been clearly defined in the literature in the context of engineering problem solving. This work-in-progress paper describes our initial results to understand how ambiguity is experienced during engineering problem solving. We interviewed both engineering students and engineering professionals about ambiguous problems they have encountered. We found that both groups identified technical ambiguity as the core element of engineering problem solving. They also described differences between classroom and workplace problems, with students describing classroom problems as “purposefully” ambiguous. Students had strong negative emotional reactions to ambiguity, in contrast to professionals who seemed to accept ambiguity as a common element in engineering problem. Our initial findings suggest that changes to engineering education practice that allow students to become comfortable with ambiguity would better prepare them for the ambiguous problems they will face in the workplace. Keywords—problem solving, ambiguity, qualitativemore » « less