This paper examines the impact of a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (NSF S-STEM) Program at a large, Minority-Serving institution in the western U.S. Despite growing efforts to diversify STEM fields, underrepresented minority (URM) students continue to face significant challenges in persistence and success. This scholarship program addresses these challenges by providing financial support, faculty and peer mentorship, and skills development opportunities to academically talented and low-income URM STEM students. This study evaluates how participation in the program enhances key noncognitive skills, such as students' sense of belonging, leadership and collaboration skills, and science identity, which are critical to STEM persistence. Using both survey and university-based data among the 47 participating scholars, results reveal that program participants report strong levels of sense of belonging, high efficacy in leadership and collaboration skills, and strong science/math identities. Additionally, compared to university rates, scholarship students showed above-average retention and graduation rates, with the majority pursuing graduate studies or careers in STEM. These findings highlight the importance of comprehensive support programs that integrate financial aid, mentorship, and professional development to promote persistence and success among URM students in STEM fields.
more »
« less
Open-ended Modeling Problems and Engineering Identity
Engineering identity is an integral determinant of academic success in engineering school, as it allows students to have an understanding of themselves in relation to what they study. Studies in engineering and other STEM disciplines have shown a positive correlation between identity and retention. Previous studies by Carlone and Johnson, Hazari, and Godwin have examined the following facets of a STEM or engineering identity: performance, competence, recognition and interest. While many current papers examine how culture and social interactions may influence identity, this paper examines how doing engineering coursework can uncover or influence a student’s engineering identity. This comparative case study examines how two students’ experiences solving an Open-ended Modeling Problem (OEMP) in their statics class may have contributed to their engineering identities. Cristina and Dylan, our two cases, both recalled how they solved a problem about a hands-free crutch device in an interview at the end of the semester. None of the questions were explicitly about identity. The interviews indicate that both students were interested in solving these problems and recognized themselves as being capable of solving the problem. In the case of Cristina, the problem helped her build confidence, both through her understanding of the material and her problem solving abilities. Our results also saw both students discussing how the disciplinary authenticity made them ‘feel like an engineer.’ Implications of this work include a deeper understanding of how day-to-day problem solving within courses can influence engineering identity and may aid in understanding how certain activities and scaffolding can influence engineering identity. This is important as students who have strong engineering identities are more likely to stay in engineering, become competent engineers, and find success in their respective fields. This research can inform educators on the importance of assigning novel, ill-defined problems that require students to apply their critical thinking skills and logic skills in real world situations.
more »
« less
- Award ID(s):
- 2204726
- PAR ID:
- 10432317
- Date Published:
- Journal Name:
- ASEE annual conference proceedings
- ISSN:
- 1524-4857
- Page Range / eLocation ID:
- 1-14
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ongoing lack of diversity in STEM fields has been described as both: a) a critical issue with a detrimental impact on the United States’ ability to compete with global innovation (Chen, 2013) and b) a systemic issue that excludes certain groups of people from opportunities for economic mobility and job security (Wait & McDonald, 2019). Historically excluded groups, such as women, Black/African Americans, Latin Americans, and economically disadvantaged individuals, continue to be in the minority in STEM (Carnevale et al., 2021). Through the years of research on historically excluded groups, researchers have asserted the importance of developing an engineering identity in determining later success in engineering (Allen & Eisenhart, 2017; Kang et al., 2019; Stipanovic & Woo, 2017). With only 8% of all engineering students entering higher education from low income backgrounds (NCES, 2016; Major et. al, 2018), these students often face significant barriers to their success (Chen, 2013; Hoxby & Avery, 2012), yet there has been very little attention given to them in the research historically. Our study seeks to address the gap related to this population and support the developing understanding of how high achieving, low income students form an engineering identity, as well as the intersectionality and salience of their other socio-cultural identities. Using the theoretical framework of figured worlds (Holland et al., 1998; Waide-James & Schwartz, 2019), we sought to explore what factors shaped the formation of an engineering identity for high achieving, low income college students participating in an engineering scholarship program. Specifically, our research questions were: 1) What factors shape the formation of engineering identity for high achieving, low income students participating in an engineering scholarship program? and 2) How salient are other social identities in the formation of their engineering identity? A constructivist grounded theory (Charmaz, 2014) design guided our selection of individual interviews and focus groups as data collection tools, allowing us to tailor our interview questions and shape our programming around the needs of participants. NSF SSTEM-sponsored program activities that could shape the figured world of participants included intentional mentoring, cohort-based seminars, targeted coursework in design courses, and connecting students to internships and co-ops. Emerging themes for our preliminary data analysis reveal the importance of peer relationships, professional mentorship, and cultural wealth, including social capital. Preliminary results from this study have the potential to increase understanding of how to best support the success of high achieving, low income college students in engineering programs, including the implementation of targeted interventions and supports, as well as shed further light on the skills they use to overcome systemic barriers.more » « less
-
Developing a strong engineering identity, or sense of belonging in engineering, is essential to pursuing and persisting in the field. Participating in an engineering outreach program is widely seen as an opportunity for youth to ignite and increase an identity as an engineer. As early as elementary school, youth evaluate their experiences, interests, and successes to make choices about possible futures. Although these early experiences and choices influence future participation in, pursuit of, and persistence in engineering, studies of engineering identity development have concentrated on undergraduate and high school learners. This study examines engineering identity development in elementary school students participating in an engineering education outreach program, expanding understanding of early influences on engineering identity formation. This study asks: How do students’ descriptions of their engineering experiences indicate the influence their experiences have on their engineering identity development? This study is embedded in an NSF-funded study of a university-led engineering education outreach program. In this program, pairs of university students facilitated weekly hour-long engineering design challenges in elementary classrooms throughout the school year. At the end of the academic year, we conducted semi-structured interviews with 76 fourth- and fifth-grade students who had participated in the outreach program. The interviewers asked students to rate their enjoyment of and skills in engineering within the context of the program. Iterative qualitative coding was used to elicit emergent patterns in students’ responses and examine them in the context of the Godwin et al (2016) engineering identity framework, using the constructs of interest, performance/competence, and recognition. Responses were then analyzed based on participants’ gender to understand and identify potential differences in influences on engineering identity development. Findings indicate that student talk around interest tended to be more positive, while student talk around performance/competence tended to be more negative, indicating the type of relationships students had with their interest in engineering compared to their perceived skills in doing engineering. However, within the construct of performance/competence, girls used negative language at a higher frequency than boys. Within this construct-based code, there were categories with large variations in positive and negative talk by gender. These gendered patterns provide insight into the differing ways girls and boys interact with engineering and how they start to develop engineering identities.more » « less
-
Leaders in industry and government are calling for increasing innovation in STEM fields to maintain the nation's economic competitiveness [15]. Solving today's complex challenges will require cooperation among experts from many fields. Successful leaders must harness the diverse capabilities of teams composed of these experts and be technically skilled. Undergraduate engineering students can fill this need by learning how to be effective leaders during their formation as engineers. Unfortunately, many engineering students graduate with little development of leadership skills; engineering educators do not currently have a sufficient understanding of how engineering students develop into leaders. This NSF ECE supported project seeks to improve educators’ understanding of the interaction between leadership and engineering identities in the formation of undergraduate engineers. This work postulates that a cohesive engineering leadership identity should exist at the intersection of engineering and leadership identities. Now entering its second year the project is wrapping up its quantitative phase and is beginning the qualitative phase of investigation. This paper discusses the process of developing the qualitative research protocols used to explore identity formation in groups of undergraduate engineers at three different campuses. The discussion shows the formation of the protocol using prior work in leadership and engineering identity constructs from both this project and the literature. The protocol development, methods, and findings from early interviews are presented. Initial findings suggest several factors are important to engineering educators interested in developing engineers who are ready to lead. The findings include evidence of some level of conflict between engineering identity and leadership identity as well as further evidence of engineering students’ compartmentalization of leadership as outside of engineering. In addition, this paper includes the learning outcomes of three REU students who joined the project to assist with the development of the qualitative protocol. The REU students made significant contributions to initial data collection as participants and observers. The REU students were the lead authors of this paper.more » « less
-
Challenge or problem-based learning help students develop deeper content understanding and enhanced STEM skillsets and provide opportunities for learning across multiple contexts. Educational interventions that include active learning, mentoring, and role modeling are particularly important in recruiting and retaining female and minority students in STEM. With this framework in mind, we implemented the Vertically-Integrated Projects (VIP) model at a public urban research university in the 2022-2023 academic year with the goal of helping participating students increase engineering and STEM identity and other psychosocial outcomes. This paper reports the results from the first year of our VIP program. At the beginning and end of the academic year, participants completed measures of engineering identity; engineering self-efficacy; engineering mindset; intention to remain in the engineering major; intention to have a career in engineering; and STEM professional identity. Wilcoxon Signed Ranks (N=10) tests showed no statistically significant differences on any of these measures. Participants also responded to 20 items assessing their perceptions of their level of knowledge and skills in a variety of areas relevant to their experience in the VIP program. Wilcoxon Signed Ranks tests (N=10) revealed some statistically significant differences between pre- and post-test. Specifically, students tended to see themselves as having greater knowledge or skills in planning a long-term project, communicating technical concepts and designs to others, designing systems, components, or processes to meet practical or applied needs, understanding computer hardware and systems, working on a multidisciplinary team, and making ethical decisions in engineering/research. Finally, at the end of the Spring semester, participants rated the extent to which they perceived the VIP program helped them to develop their skills on the same 20 items. Most participants believed the VIP program helped them to develop each skill either somewhat or a great deal. Overall, while participation in the VIP program did not influence student engineering identity, self-efficacy, mindset, or major/career intentions, it was associated with increased self-perceived abilities on six specific skills. Additionally, most participants agreed that the VIP program helped them develop 20 skills at least “somewhat.”more » « less
An official website of the United States government

