skip to main content

Title: Step-Based Tutoring Software for Complex Procedures in Circuit Analysis
Step-based tutoring systems, in which each step of a student’s work is accepted by a computer using special interfaces and provided immediate feedback, are known to be more effective in promoting learning than traditional and more common answer-based tutoring systems, in which only the final (usually numerical) answer is evaluated. Prior work showed that this approach can be highly effective in the domain of linear circuit analysis in teaching topics involving relatively simple solution procedures. Here, we demonstrate a novel application of this approach to more cognitively complex, multi-step procedures used to analyze linear circuits using the superposition and source transformation methods. Both methods require that students interactively edit a circuit diagram repeatedly, interspersed with the writing of relevant equations. Scores on post-tests and student opinions are compared using a blind classroom-based experiment where students are randomly assigned to use either the new system or a commercially published answer-based tutoring system on these topics. Post-test scores are not statistically significantly different but students prefer the step-based system by a margin of 84 to 11% for superposition and 68 to 23% for source transformations.
Authors:
; ; ;
Award ID(s):
1821628
Publication Date:
NSF-PAR ID:
10105729
Journal Name:
Proceedings - Frontiers in Education Conference
ISSN:
0190-5848
Sponsoring Org:
National Science Foundation
More Like this
  1. Step-based tutoring systems are known to be more effective than traditional answer-based systems. They however require that each step in a student’s work be accepted and evaluated automatically to provide effective feedback. In the domain of linear circuit analysis, it is frequently necessary to allow students to draw or edit circuits on their screen to simplify or otherwise transform them. Here, the interface developed to accept such input and provide immediate feedback in the Circuit Tutor system is described, along with systematic assessment data. Advanced simplification methods such as removing circuit sections that are removably hinged, voltage-splittable, or current-splittable aremore »taught to students in an interactive tutorial and then supported in the circuit editor itself. To address the learning curve associated with such an interface, ~70 video tutorials were created to demonstrate exactly how to work the randomly generated problems at each level of each of the tutorials in the system. A complete written record or “transcript” of student’s work in the system is being made available, showing both incorrect and correct steps. Introductory interactive (multiple choice) tutorials are now included on most topics. Assessment of exercises using the interactive editor was carried out by professional evaluators for several institutions, including three that heavily serve underrepresented minorities. Both quantitative and qualitative methods were used, including focus groups, surveys, and interviews. Controlled, randomized, blind evaluations were carried out in three different course sections in Spring and Fall 2019 to evaluate three tutorials using the interactive editor, comparing use of Circuit Tutor to both a commercial answer-based system and to conventional textbook-based paper homework. In Fall 2019, students rated the software a mean of 4.14/5 for being helpful to learn the material vs. 3.05/5 for paper homework (HW), p < 0.001 and effect size d = 1.11σ. On relevant exam questions that semester, students scored significantly (p = 0.014) higher with an effect size of d = 0.64σ when using Circuit Tutor compared to paper HW in one class section, with no significant difference in the other section.« less
  2. Linear circuit analysis is a complex topic in which students must use many principles to complete problems successfully, which may overload working memory and thereby impede learning. Introducing organizing principles may help students develop schemas that help reduce this burden and develop deeper conceptual understanding. The use of duality as such an organizing concept is explored in this work. To be effective, however, all the topics should be presented in a dual manner. Historically, definitions of series and parallel elements have been used that are not dual to each other, and mesh analysis has been performed in a way thatmore »is not fully dual to nodal analysis. This paper examines the research question of whether these key topics can be presented in a novel, fully dual fashion and whether students will accept and appreciate such a treatment. The revised approaches were implemented using lectures, online interactive tutorials, and step-based tutoring software exercises. Surveys using both quantitative and qualitative analysis were conducted over three semesters and showed positive reactions from 72-83% of students. These results can lead to development of a full set of instructional materials centered around duality to enable improved learning of circuit analysis.« less
  3. We present a novel approach to intro-to-programming domain model discovery from textbooks using an over-generation and ranking strategy. We first extract candidate key phrases from each chapter in a Computer Science textbook focusing on intro-to-programming and then rank those concepts according to a number of metrics such as the standard tf-idf weight used in information retrieval and metrics produced by other text ranking algorithms. Specifically, we conduct our work in the context of developing an intelligent tutoring system for source code comprehension for which a specification of the key programming concepts is needed - the system monitors students' performance onmore »those concepts and scaffolds their learning process until they show mastery of the concepts. Our experiments with programming concept instruction from Java textbooks indicate that the statistical methods such as KP Miner method are quite competitive compared to other more sophisticated methods. Automated discovery of domain models will lead to more scalable Intelligent Tutoring Systems (ITSs) across topics and domains, which is a major challenge that needs to be addressed if ITSs are to be widely used by millions of learners across many domains.« less
  4. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering educationmore »to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to which they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering.« less
  5. Introductory engineering courses at large universities often number over a hundred students, while online classes can have even larger enrollments, significantly constraining instructors’ ability to provide feedback on homework, including the free-body diagrams (FBDs). Most online homework systems do not provide feedback on FBDs if the systems even allow the submission, and instructors often lack time or resources to provide this. A few systems have been developed that use a menu-based system allowing students to creative FBDs. There is a growing concern amongst engineering educators that student lacks critical sketching skills and the ability to idealize a real-world system asmore »a free body diagram (FBD). A sketch-recognition based tutoring system, Mechanix, allows learners to hand-draw solutions just as they would with pencil and paper, while also providing iterative real-time personalized feedback. Sketch recognition algorithms use artificial intelligence to identify the shapes, their relationships, and other features of the sketched student drawing. Other AI algorithms then determine if and why a student’s work is incorrect, enabling the tutoring system to return immediate and iterative personalized feedback facilitating student learning that is otherwise not possible in large classes. Preliminary results using Mechanix, a sketch-based statics tutoring system built at Texas A&M University suggest that a sketch-based tutoring system increases homework motivation in struggling students and is as effective as paper-and-pencil-based homework for teaching method of joints truss analysis. The current project implements Mechanix at five different universities obtaining Pre/Post Concept Inventory, homework, and exam scores. It is compared against either the university's current online system or paper-based homework. Focus groups provide further insight into the students’ perceptions about the impact of Mechanix on their learning.« less