skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From Nuclei to the Cosmos: Tracing Heavy-Element Production with the Oldest Stars
Understanding the origin of the elements has been a decades-long pursuit, with many open questions remaining. Old stars found in the Milky Way and its dwarf satellite galaxies can provide answers because they preserve clean element abundance patterns of the nucleosynthesis processes that operated some 13 billion years ago, enabling reconstruction of the chemical evolution of the elements. This review focuses on the astrophysical signatures of heavy neutron-capture elements made in the s-, i-, and r-processes found in old stars. A highlight is the recently discovered r-process galaxy Reticulum II, which was enriched by a neutron star merger. These results show that old stars in dwarf galaxies provide a novel means to constrain the astrophysical site of the r-process, ushering in much-needed progress on this major outstanding question. This nuclear astrophysics research complements the many experimental and theoretical nuclear physics efforts into heavy-element formation, and also aligns with results on the gravitational-wave signature of neutron star mergers.  more » « less
Award ID(s):
1255160 1716251
PAR ID:
10105812
Author(s) / Creator(s):
Date Published:
Journal Name:
Annual Review of Nuclear and Particle Science
Volume:
68
Issue:
1
ISSN:
0163-8998
Page Range / eLocation ID:
237 to 269
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract R-process enhanced stars with [Eu/Fe] ≥ +0.7 (so-calledr-II stars) are believed to have formed in an extremely neutron-rich environment in which a rare astrophysical event (e.g., a neutron-star merger) occurred. This scenario is supported by the existence of an ultra-faint dwarf galaxy, Reticulum II, where most of the stars are highly enhanced inr-process elements. In this scenario, some small fraction of dwarf galaxies around the Milky Way wererenhanced. When each r-enhanced dwarf galaxy accreted to the Milky Way, it deposited manyr-II stars in the Galactic halo with similar orbital actions. To search for the remnants of ther-enhanced systems, we analyzed the distribution of the orbital actions ofN= 161r-II stars in the solar neighborhood by using Gaia EDR3 data. Since the observational uncertainty is not negligible, we applied a newly developed greedy optimistic clustering method to the orbital actions of our sample stars. We found six clusters ofr-II stars that have similar orbits and chemistry, one of which is a new discovery. Given the apparent phase-mixed orbits of the member stars, we interpret that these clusters are good candidates for remnants of completely disruptedr-enhanced dwarf galaxies that merged with the ancient Milky Way. 
    more » « less
  2. Abstract We study the formation of stars with varying amounts of heavy elements synthesized by the rapid neutron-capture process (r-process) based on our detailed cosmological zoom-in simulation of a Milky Way–like galaxy with anN-body/smoothed particle hydrodynamics code,asura. Most stars with no overabundance inr-process elements, as well as the stronglyr-process-enhanced (RPE)r-II stars ([Eu/Fe] > +0.7), are formed in dwarf galaxies accreted by the Milky Way within the 6 Gyr after the Big Bang. In contrast, over half of the moderately enhancedr-I stars (+0.3 < [Eu/Fe] ≤ +0.7) are formed in the main in situ disk after 6 Gyr. Our results suggest that the fraction ofr-I andr-II stars formed in disrupted dwarf galaxies is larger the higher their [Eu/Fe] is. Accordingly, the most strongly enhancedr-III stars ([Eu/Fe] > +2.0) are formed in accreted components. These results suggest that non-r-process-enhanced stars andr-II stars are mainly formed in low-mass dwarf galaxies that hosted either none or a single neutron star merger, while ther-I stars tend to form in the well-mixed in situ disk. We compare our findings with high-resolution spectroscopic observations of RPE metal-poor stars in the halo and dwarf galaxies, including those collected by theR-Process Alliance. We conclude that observed [Eu/Fe] and [Eu/Mg] ratios can be employed in chemical tagging of the Milky Way’s accretion history. 
    more » « less
  3. Abstract Heavy elements are synthesized by ther-process in neutron star mergers and potentially in rare supernovae linked to strong magnetic fields. Expensive hydrodynamic simulations of these extreme environments are usually postprocessed to calculate the nucleosynthesis. In contrast, here we follow a site-independent approach based on three key parameters: electron fraction, entropy, and expansion timescale. Our model reproduces the results based on hydrodynamic simulations. Moreover, the 120,000 astrophysical conditions analyzed allow us to systematically and generally explore the astrophysical conditions of ther-process, also beyond those found in current simulations. Our results show that a wide range of conditions produce very similar abundance patterns explaining the observed robustness of ther-process between the second and third peak. Furthermore, we cannot find a single condition that produces the full solarr-process pattern from first to third peak. Instead, a superposition of at least two or three conditions or components is required to reproduce the typicalr-process pattern as observed in the solar system and very old stars. The different final abundances are grouped into eight nucleosynthesis clusters, which can be used to select representative conditions for comparisons to observations and investigations of the nuclear physics input. 
    more » « less
  4. Abstract A promising astrophysical site to produce the lighter heavy elements of the first r -process peak ( Z = 38 − 47) is the moderately neutron-rich (0.4 < Y e < 0.5) neutrino-driven ejecta of explosive environments, such as core-collapse supernovae and neutron star mergers, where the weak r -process operates. This nucleosynthesis exhibits uncertainties from the absence of experimental data from ( α , xn ) reactions on neutron-rich nuclei, which are currently based on statistical model estimates. In this work, we report on a new study of the nuclear reaction impact using a Monte Carlo approach and improved ( α , xn ) rates based on the Atomki-V2 α optical model potential. We compare our results with observations from an up-to-date list of metal-poor stars with [Fe/H] < −1.5 to find conditions of the neutrino-driven wind where the lighter heavy elements can be synthesized. We identified a list of ( α , xn ) reaction rates that affect key elemental ratios in different astrophysical conditions. Our study aims to motivate more nuclear physics experiments on ( α , xn ) reactions using the current and new generation of radioactive beam facilities and also more observational studies of metal-poor stars. 
    more » « less
  5. Since its birth roughly 60 years ago, the field of nuclear astrophysics has strived to provide a comprehensive description of element synthesis in the Universe. While some of the astrophysical processes responsible for stellar nucleosynthesis are well understood, others remained elusive for decades. One of the major open questions in the field centered on the production of elements heavier than iron. An important breakthrough happened in 2017 when gravitational wave and electromagnetic observatories around the world and in space detected for the first time the merging of two neutron stars and the subsequent production of heavy elements. The puzzle, however, is far from solved. Interpreting the observations requires understanding the nuclear processes that drive these events. My work focuses on the measurement of critical nuclear properties needed to explain neutron-star mergers and other astrophysical observations. In this article, I discuss recent experiments performed at the National Superconducting Cyclotron Laboratory at Michigan State University, as well as new initiatives and plans to undertake work at the next-generation rare isotope facility, the Facility for Rare Isotope Beams. 
    more » « less