Band-to-band photoluminescence (PL) imaging is one of the experimental techniques widely used to assess non-radiative recombination rates at a fixed incident light intensity. Minority carrier lifetimes in semiconductors such as mc-Si are also affected by optical injection levels. These can be measured by transient photoconductance (TPC). In this paper, PL imaging of shunts and TPC lifetime results for incident intensities of up to 50 Suns are compared for multiple samples of mc-Si.
more »
« less
Temperature sensing via photoluminescence lifetimes of Rhodamine B*
Non-invasive temperature probes have use in many settings where conventional thermometers may not be suitable or as efficient. An optical temperature probe is a material whose optical properties, such as photoluminescence (PL) or PL lifetime, are known as a function of temperature. We present results of PL lifetime studies of the organic dye Rhodamine B, which is a good candidate for use in temperature probes due to its large PL emission. We have measured PL lifetimes using time correlated single photon counting (TCSPC). The lifetimes were measured from temperatures of 15 K to 330 K. The lifetimes appear to be non-monotonic: they increase with temperature to a point, then decrease again. It is uncertain what is causing this unexpected trend, and we are in the process of verifying these lifetime measurements as well as studying other possible luminescent materials such as semiconductor quantum dots for application as temperature probes. *Research was performed at BYU as part of the NSF REU program, grant no. 1757998.
more »
« less
- Award ID(s):
- 1757998
- PAR ID:
- 10106053
- Date Published:
- Journal Name:
- Bulletin of the American Physical Society
- Volume:
- 64
- Issue:
- 2
- ISSN:
- 0003-0503
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Carbon quantum dots (CDs) are a relatively new class of carbon nanomaterials which have been studied very much in the last fifteen years to improve their already favorable properties. The optical properties of CDs have drawn particular interest as they display the unusual trait of excitation-dependent emission, as well as high fluorescence quantum yields (QY), long photoluminescence (PL) decay lifetimes, and photostability. These qualities naturally lead researchers to apply CDs in the field of imaging (particularly bio-imaging) and sensing. Since the amount of publications regarding CDs has been growing nearly exponentially in the last ten years, many improvements have been made in the optical properties of CDs such as QY and PL lifetime. However, a great deal of confusion remains regarding the PL mechanism of CDs as well as their structural properties. Therefore, presented in this review is a summary and discussion of the QYs and PL lifetimes reported in recent years. The effect of method as well as precursor has been evaluated and discussed appropriately. The current theories regarding the PL mechanism of CDs are discussed, with special attention to the concept of surface state-controlled PL. With this knowledge, the improvement of preparation and applications of CDs related to their optical properties will be easily accomplished. Further improvements can be made to CDs through the understanding of their structural and optical properties.more » « less
-
The platinum(II) complexes of known quinoline-annulated porphyrins were prepared and spectroscopically characterized. Their optical properties (UV-vis absorption and phosphorescence spectra and phosphorescence lifetimes) were recorded and contrasted against their 2,3-dioxoporphyrin precursor platinum(II) complex. The absorbance and emission spectra (in EtOH glass at 77 K) of the quinoline-annulated porphyrins fall within the NIR optical window of tissue, ranging, depending on the derivative, between [Formula: see text]950 and 1200 nm. The much red-shifted optical spectra, when compared to their non-quinoline-annulated precursors, are attributed to the [Formula: see text]-extension and conformational non-planarity that the annulation causes. The emission yields of the mono-quinoline-annulated derivatives are too low and their lifetimes too short to be practical emitters, but the bis-annulated derivative possesses a practical lifetime and emission yield, suggesting its further exploration, particularly since the methodology toward the solubilization of the quinoline-annulated porphyrins in biological media through derivatization is known.more » « less
-
Rare earth doped lithium fluorides are a class of materials with a wide variety of optical applications, but the hazardous reagents used in their synthesis often restrict the amount of product that can be created at one time. In this work, 10%Yb3+:LiLuF4 (Yb:LLF) crystals have been synthesized through a safe and scalable polyethylene glycol (PEG)-assisted hydrothermal method. A combination of X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and photoluminescence (PL) measurements were used to characterize the obtained materials. The influence of reaction temperature, time, fluoride source, and precursor amount on the shape and size of the Yb:LLF crystals are also discussed. Calibrated PL spectra of Yb3+ ions show laser cooling to more than 15 K below room temperature in air and 5 K in deionized water under 1020 nm diode laser excitation measured at a laser power of 50 mW.more » « less
-
Abstract In the radiation belts, energetic and relativistic electron precipitation into the atmosphere is expected to be mainly controlled over the long term by quasilinear pitch‐angle scattering by whistler‐mode and electromagnetic ion cyclotron waves. Accordingly, statistical electron lifetimes have been derived from quasilinear diffusion theory on the basis of multi‐year wave statistics. However, the full consistency of such statistical quasilinear models of electron lifetimes with both measured electron lifetimes, spectra of trapped and precipitated electron fluxes, and wave‐driven diffusion rates inferred from electron flux measurements, has not yet been verified in detail. In the present study, we use data from Electron Loss and Fields Investigation (ELFIN) mission CubeSats, launched in September 2018 in low Earth orbit, to carry out such comparisons between quasi‐linear diffusion theory and observed electron flux variations. We show that statistical theoretical lifetime models are in reasonable agreement with electron pitch‐angle diffusion rates inferred from the precipitated to trapped 100 keV electron flux ratio measured by ELFIN after correction for atmospheric backscatter, as well as with timescales of trapped electron flux decay independently measured over several days by ELFIN. The present results demonstrate for the first time a broad consistency between timescales of trapped electron flux decay, the pitch‐angle distribution of precipitated electrons, and quasilinear models of wave‐driven electron loss, showing the reliability of such statistical electron lifetime models parameterized by geomagnetic activity for evaluating electron precipitation into the atmosphere during not too disturbed periods.more » « less
An official website of the United States government

